Have a personal or library account? Click to login
From the Fibonacci to Pell numbers and beyond via Dyck paths Cover

From the Fibonacci to Pell numbers and beyond via Dyck paths

Open Access
|Jun 2022

References

  1. [1] A. Bacher, Generalized Dyck paths of bounded height, arXiv:1303.2724.
  2. [2] E. Barcucci, A. Bernini and R. Pinzani, Strings from linear recurrences: a Gray code, in: Lecroq, T. and Puzynina, S. (Eds.), Combinatorics on Words, 13th International Conference, WORDS 2021, Lecture Notes in Comput. Sci., 12847 (2021) 40–49.
  3. [3] E. Barcucci, A. Bernini and M. Poneti, From Fibonacci to Catalan permutations, Pure Math. Appl. (PU.M.A), 17 (2006) 1–17.
  4. [4] M. Bousquet-Mélou, Discrete excursions, Sém. Lothar. Combin., 57 (2008) B57d.10.1016/j.endm.2008.06.016
  5. [5] J. J. Bravo, J. L. Herrera and J. L. Ramírez, Combinatorial interpretation of generalized Pell numbers, J. Integer Seq. 23 (2020) 20.2.1.
  6. [6] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Vol. 3, 1966, Addison-Wesley.
  7. [7] N. J. A. Sloane and The OEIS Foundation Inc., The on-line encyclopedia of integer sequences, http://oeis.org.
  8. [8] V. Vajnovszki, A loopless generation of bitstrings without p consecutive ones, in: Calude, C. S., Dinneen, M. J. and Sburlan, S. (Eds.), Combinatorics, Computability and Logic (2001), Discrete Mathematics and Theoretical Computer Science, Springer, London, pp. 227–240.
Language: English
Page range: 17 - 22
Submitted on: Mar 31, 2022
Accepted on: May 15, 2022
Published on: Jun 18, 2022
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Elena Barcucci, Antonio Bernini, Renzo Pinzani, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.