Have a personal or library account? Click to login
A q, r-analogue for the Stirling numbers of the second kind of Coxeter groups of type B Cover

A q, r-analogue for the Stirling numbers of the second kind of Coxeter groups of type B

Open Access
|Jun 2022

References

  1. [1] M. Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math., 159 (1996) 13–33.
  2. [2] A. Z. Broder, The r-Stirling numbers, Discrete Math., 49 (1984) 241–259.
  3. [3] Y. Cai and M. A. Readdy, q-Stirling numbers: a new view, Adv. in Appl. Math., 86 (2017) 50–80.10.1016/j.aam.2016.11.007
  4. [4] I. Dolgachev and V. Lunts, A character formula for the representation of a Weyl group in the cohomology of the associated toric variety, J. Algebra, 168 (1994) 741–772.
  5. [5] T. A. Dowling, A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B, 14 (1973) 61–86. Erratum: J. Combin. Theory Ser. B, 15 (1973) 211.10.1016/0095-8956(73)90024-5
  6. [6]Ö. Eğecioğlu and A. M. Garsia, Lessons in Enumerative Combinatorics, Graduate Texts in Math., Vol. 290, Springer, 2021.10.1007/978-3-030-71250-1
  7. [7] G. Hutchinson, Partitioning algorithms for finite sets, Comm. ACM, 6 (1963) 613–614.10.1145/367651.367661
  8. [8] T. Komatsu, E. Bagno and D. Garber, A q, r-analogue of poly-Stirling numbers of second kind, in preparation.
  9. [9] I. Mező, Combinatorics and Number Theory of Counting Sequences, CRC Press. Taylor & Francis Group. Boca Raton (FL), 2020.10.1201/9781315122656
  10. [10] B. K. Miceli, Two q-analogues of poly-Stirling numbers, J. Integer Seq., 14 (2011) Article 11.9.6.
  11. [11] S. Milne, Restricted growth functions and incidence relations of the lattice of partitions of an n-set, Adv. Math., 26 (1977) 290–305.
  12. [12] V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math., 177 (1997) 195–222.
  13. [13] B. Sagan and J. Swanson, q-Stirling numbers in type B, arXiv:2205.14078.
  14. [14] J. P. Swanson and N. R. Wallach, Harmonic differential forms for pseudo-reflection groups II. Bi-degree bounds, arXiv:2109.03407
  15. [15] D. G. L. Wang, On colored set partitions of type Bn, Cent. Eur. J. Math., 12 (2014) 1372–1381.
  16. [16] T. Zaslavsky, The geometry of root systems and signed graphs, Amer. Math. Monthly, 88 (1981) 88–105.
Language: English
Page range: 8 - 16
Submitted on: Mar 31, 2022
Accepted on: May 15, 2022
Published on: Jun 18, 2022
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Eli Bagno, David Garber, Takao Komatsu, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.