Have a personal or library account? Click to login

References

  1. Adams, G. (2020). A beginner’s guide to RT-PCR, qPCR and RT-qPCR. The Biochemist, 42 (3), 48–53.
  2. Albuquerque, A. P., Balmana, M., Reis, C. A., Beltrao, E. I. (2018). Identification of appropriate housekeeping genes for quantitative RT-PCR analysis in MDA-MB-231 and NCI-H460 human cancer cell lines under hypoxia and serum deprivation. J. Mol. Clin. Med., 1, 127–134. DOI: 10.31083/j.jmcm.2018.03.001.
  3. Andersen, C. L., Jensen, J. L., ¨rntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res., 64 (15), 5245–5250.
  4. Bustin, S., Nolan, T. (2017). Talking the talk, but not walking the walk: RT-qPCR as a paradigm for the lack of reproducibility in molecular research. Eur. J. Clin. Invest., 47 (10), 756–774.
  5. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett. J,, Kubista, M., Mueller, R., Nolan, T., Pfaffl, M., Shipley, G. L., Vandesompele, J., Wittwer, C. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem., 55 (4), 611–622.
  6. Cailleau, R., Olivé, M., Cruciger, Q. V. (1978). Long-term human breast carcinoma cell lines of metastatic origin: Preliminary characterization. In Vitro, 14 (11), 911–915.
  7. Chavez, K. J., Garimella, S. V., Lipkowitz, S. (2010). Triple negative breast cancer cell lines: One tool in the search for better treatment of triple negative breast cancer. Breast Dis., 32 (1–2), 35–48.
  8. Curis, E., Nepost, C., Grillaut Laroche, D., Courtin, C., Laplanche, J. L., Etain, B., Marie-Clare, C. (2019). Selecting reference genes in RT-qPCR based on equivalence tests: A network-based approach. Sci. Rep., 9, 16231.
  9. Endres, M., Kneitz, S., Orth, M. F., Perera, R. K., Zernecke, A., Butt, E. (2016). Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1). Oncotarget, 39 (7), 64244–64259.
  10. Errington, T. M., Iorns, E., Gunn, W., Tan, F. E., Lomax, J., Nosek, B. A. (2014). An open investigation of the reproducibility of cancer biology research. Elife, 3, 04333.
  11. EMBL-EBI, European Molecular Biology Laboratory, European Bioinformatics Institute, (2025). Expression Atlas. https://www.ebi.ac.uk/gxa/home (accessed 3.06.2025).
  12. Goldhirsch, A., Winer, E. P., Coates, A. S., Gelber, R. D., Piccart-Gebhart, M., Thürlimann, B., Senn, H. J.; Panel members (2013). Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Ann. Oncol., 24 (9), 2206–2223.
  13. Gorji-Bahri, G., Moradtabrizi, N., Hashemi, A. (2021a). Uncovering the stability status of the reputed reference genes in breast and hepatic cancer cell lines. PLoS One., 16 (11), e0259669.
  14. Gorji-Bahri, G., Moradtabrizi, N., Vakhshiteh, F., Hashemi, A. (2021b). Validation of common reference genes stability in exosomal mRNA-isolated from liver and breast cancer cell lines. Cell Biol. Int., 45 (5), 1098–1110.
  15. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol., 8 (2), R19 (2007).
  16. Jacob, F., Guertler, R., Naim, S., Nixdorf, S., Fedier, A., Hacker, N. F., Heinzelmann-Schwarz, V. (2013). Careful selection of reference genes is required for reliable performance of RT-qPCR in human normal and cancer cell lines. PLoS One., 8 (3), e59180.
  17. Jain, N., Mitre, I., Nitisa, D., Pirsko, V., Cakstina-Dzerve, I. (2021). Identification of novel endogenous controls for qPCR normalization in SK-BR-3 breast cancer cell line. Genes (Basel), 12 (10), 1631.
  18. Jain, N., Nitisa, D., Pirsko, V., Cakstina, I. (2020). Selecting suitable reference genes for qPCR normalization: A comprehensive analysis in MCF-7 breast cancer cell line. BMC Mol. Cell Biol., 21 (1), 68.
  19. Jo, J., Choi, S., Oh, J., Lee, S. G., Choi, S. Y., Kim, K. K., Park, C (2019). Conventionally used reference genes are not outstanding for normalization of gene expression in human cancer research. BMC Bioinformatics, 20 (Suppl 10), 245.
  20. Kılıē, Y., Çelebiler, A. Ç., Sakızlı, M. (2014). Selecting housekeeping genes as references for the normalization of quantitative PCR data in breast cancer. Clin. Transl. Onco., 16 (2), 184–190.
  21. Krasnov, G. S., Kudryavtseva, A. V., Snezhkina, A. V., Lakunina, V. A., Beniaminov, A. D., Melnikova, N. V., Dmitriev, A. A. (2019). Pan-cancer analysis of TCGA data revealed promising reference genes for qPCR normalization. Front Genet., 10, 97.
  22. Lemma, S., Avnet, S., Salerno, M., Chano, T., Baldini, N. (2016). Identification and validation of housekeeping genes for gene expression analysis of cancer stem cells. PLoS One, 11 (2), e0149481.
  23. Li, Y., Zhang, L., Li, R., Zhang, M., Li, Y., Wang, H., Wang, S., Bao, Z. (2019). Systematic identification and validation of the reference genes from 60 RNA-Seq libraries in the scallop Mizuhopecten yessoensis. BMC Genomics, 20 (1), 288.
  24. Liu, L. L., Zhao, H., Ma, T. F., Ge, F., Chen, C. S., Zhang, Y. P. (2015). Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection. PLoS One, 10 (1), e0117058.
  25. Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25 (4), 402–408.
  26. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29 (9), e45.
  27. Racz, G. A., Nagy, N., Tovari, J., Apati, A., Vertessy, B. G. (2021). Identification of new reference genes with stable expression patterns for gene expression studies using human cancer and normal cell lines. Sci. Rep., 11, PMID: 34593877.
  28. Ran, Q., Li, A., Tan, Y., Zhang, Yu, Zhang, Yo, Chen, H (2024). Action and therapeutic targets of myosin light chain kinase, an important cardiovascular signaling mechanism. Pharmacol. Res., 206, 107276.
  29. Remans, T., Keunen, E., Bex, G. J., Smeets, K., Vangronsveld, J., Cuypers, A. (2014). Reliable gene expression analysis by reverse transcription-quantitative PCR: Reporting and minimizing the uncertainty in data accuracy. Plant Cell., 26 (10), 3829–3837.
  30. Sachs, N., de Ligt, J., Kopper, O., Gogola, E., Bounova, G., Weeber, F., Balgobind, A. V., Wind, K., Gracanin, A., Begthel, H., et al. (2018). A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 172 (1–2), 373–386.
  31. Sanders, R., Mason, D. J., Foy, C. A., Huggett, J. F. (2014). Considerations for accurate gene expression measurement by reverse transcription quantitative PCR when analysing clinical samples. Anal. Bioanal. Chem., 406 (26), 6471–6483.
  32. Smialek, M., Ilaslan, E., Sajek, M. P., Jaruzelska, J. (2021). Role of PUM RNA-binding proteins in cancer. Cancers (Basel), 13 (1), 129.
  33. Song, Q., Dou, L., Zhang, W., Peng, Y., Huang, M., Wang, M. (2021). Public transcriptome database-based selection and validation of reliable reference genes for breast cancer research. Biomed. Eng. Online, 20 (1), 124.
  34. Sundaram, V. K., Sampathkumar, N. K., Massaad, C., Grenier, J. (2019). Optimal use of statistical methods to validate reference gene stability in longitudinal studies. PLoS One, 14 (7), 0219440.
  35. Tilli, T. M., Castro, C da. S., Tuszynski, J. A., Carels, N. (2016). A strategy to identify housekeeping genes suitable for analysis in breast cancer diseases. BMC Genomics, 17 (1), 639.
  36. Turner, N., Tutt, A., Ashworth, A. (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nat. Rev. Cancer, 4 (10), 814–819.
  37. Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., Leunissen, J. A. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res., 35, W71–4.
  38. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3 (7), RESEARCH0034.
  39. Xie, F., Xiao, P., Chen, D., Xu, L., Zhang, B. (2012). miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. DOI: 10.1007/s11103-012-9885-2.
  40. Xie, J., Liu, J. K., Guo, Z. P., Guan, H., Liu, X. D., Cie, D. F., Jiang, Y. G., Ma, T., Zhou, P. K. (2020). RBX1 prompts degradation of EXO1 to limit the homologous recombination pathway of DNA double-strand break repair in G1 phase. Cell Death Differ, 27, 1383–1397.
  41. Yang, M., Wang, C., Chen, G., Zhang, G., Lin, J. (2024). Efficacy and safety of AKT inhibitors in triple-negative breast cancer: A metaanalysis and systematic review. Medicine (Baltimore), 103 (35), e39347.
  42. Zou, L., Ding, Z, Roy, P. (2010). Profilin-1 overexpression inhibits proliferation of MDA-MB-231 breast cancer cells partly through p27kip1 upregulation. J. Cell Physiol., 223 (3), 623-–629.
DOI: https://doi.org/10.2478/prolas-2025-0012 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 186 - 197
Submitted on: Feb 12, 2025
Accepted on: Jun 8, 2025
Published on: Sep 27, 2025
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2025 Annija Asnate Čekstere, Nityanand Jain, Bryan Abbo, Sindija Kezika, Dina Nitisa, Ingrīda Mitre, Inese Čakstiņa-Dzērve, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.