Have a personal or library account? Click to login
Alterations in Gut Microbiota After Antibacterial Treatment Due to Concomitant Disease Among Ambulatory Paediatric Patients Cover

Alterations in Gut Microbiota After Antibacterial Treatment Due to Concomitant Disease Among Ambulatory Paediatric Patients

Open Access
|May 2025

References

  1. Bokulich, N. A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., Lieber, A. D., Wu, F., Perez-Perez, G. I., Chen, Y., et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med., 8 (343), 343ra82. https://doi.org/10.1126/scitranslmed.aad7121.
  2. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnol., 37 (8), 852–857. 10.1038/s41587-019-0209-9). Author Correction in Nature Biotechnol., 37 (9). https://doi.org/10.1038/s41587-019-0252-6.
  3. Bourke, C. D., Gough, E. K., Pimundu, G., Shonhai, A., Berejena, C., Terry, L., Baumard, L., Choudhry, N., Karmali, Y., Bwakura-Dangarembizi, M., et al. (2019). Cotrimoxazole reduces systemic inflammation in HIV infection by altering the gut microbiome and immune activation. Sci. Transl. Med., 11 (486), eaav0537. https://doi.org/10.1126/scitranslmed.aav0537.
  4. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Meth., 13 (7). https://doi.org/10.1038/nmeth.3869.
  5. Chen, S., Zhou, Y., Chen, Y., Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34 (17). https://doi.org/10.1093/bioinformatics/bty560.
  6. Elvers, K. T., Wilson, V. J., Hammond, A., Duncan, L., Huntley, A. L., Hay, A. D., van der Werf, E. T. (2020). Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: A systematic review. BMJ Open, 10 (9). https://doi.org/10.1136/bmjopen-2019-035677.
  7. Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., Bruns, G., Yarza, P., Peplies, J., Westram, R., Ludwig, W. (2017). 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol., 261, 169–176. https://doi.org/10.1016/j.jbiotec.2017.06.1198.
  8. Gudra, D., Pupola, D., Skenders, G., Leja, M., Radovica-Spalvina, I., Gorskis, H., Vangravs, R., Fridmanis, D. (2020). Lack of significant differences between gastrointestinal tract microbial population structure of Helicobacter pylori-infected subjects before and 2 years after a single eradication event. Helicobacter, 25 (5), e12748. https://doi.org/10.1111/hel.12748.
  9. Katoh, K., Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evolut., 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010.
  10. Korpela, K., de Vos, W. M. (2018). Early life colonization of the human gut: Microbes matter everywhere. Curr. Opin. Microbiol., 44, 70–78. https://doi.org/10.1016/j.mib.2018.06.003.
  11. Luo, Y., Li, M., Luo, D., Tang, B. (2025). Gut microbiota: An important participant in childhood obesity. Adv. Nutr., 16 (2), 100362. https://doi.org/10.1016/j.advnut.2024.100362.
  12. McMurdie, P. J., Holmes, S. (2013). Phyloseq: An R ]ackage for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8 (4), e61217. https://doi.org/10.1371/journal.pone.0061217.
  13. Palleja, A., Mikkelsen, K. H., Forslund, S. K., Kashani, A., Allin, K. H., Nielsen, T., Hansen, T. H., Liang, S., Feng, Q., Zhang, C., et al. (2018). Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol., 3 (11), 1255–1265. https://doi.org/10.1038/s41564-018-0257-9.
  14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B. (2011). Scikit-learn: Machine learning in Python. J. Machine Learn. Res., 12, 2825–2830. https://dl.acm.org/doi/10.5555/1953048.2078195.
  15. Price, M. N., Dehal, P. S., Arkin, A. P. (2010). FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS ONE, 5 (3), 9490. https://doi.org/10.1371/journal.pone.0009490
  16. Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. Peer J., 4, e2584. https://doi.org/10.7717/peerj.2584.
  17. Ssekagiri, A. (2023). microbiomeSeq: Microbial community analysis in an environmental context. GitHub. http://www.github.com/umerijaz/microbiomeseq.
  18. Vangay, P., Ward, T., Gerber, J. S., Knights, D. (2015). Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe, 17 (5), 553-564. https://doi.org/10.1016/j.chom.2015.04.006
  19. Wurm, J., Curtis, N., Zimmermann, P. (2024). The effect of antibiotics on the intestinal microbiota in children: A systematic review. Frontiers Allergy, 5. https://doi.org/10.3389/falgy.2024.1458688.
  20. Yassour, M., Vatanen, T., Siljander, H., Hämäläinen, A. M., Härkönen, T., Ryhänen, S. J., Franzosa, E. A., Vlamakis, H., Huttenhower, C., Gevers, D., Lander, E. S., Knip, M., Xavier, R. J. (2016). Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med., 8 (343), 343ra81. https://doi.org/10.1126/scitranslmed.aad0917.
  21. Zimmermann, P., Curtis, N. (2019). The effect of antibiotics on the composition of the intestinal microbiota: a systematic review. J. Infect., 79 (6), 471-489. https://doi.org/10.1016/j.jinf.2019.10.008.
  22. Zuo, W., Wang, B., Bai, X., Luan, Y., Fan, Y., Michail, S., Sun, F. (2022). 16S rRNA and metagenomic shotgun sequencing data revealed consistent patterns of gut microbiome signature in pediatric ulcerative colitis. Sci. Rep., 12 (1)., 6421. https://doi.org/10.1038/s41598-022-07995-7.
DOI: https://doi.org/10.2478/prolas-2025-0001 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 1 - 7
Submitted on: Mar 25, 2025
Accepted on: Apr 19, 2025
Published on: May 15, 2025
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Dita Gudrā, Ērika Bļinkova, Margarita Zaharova, Larisa Zaharova, Elīna Bērziņa, Megija Luņģe, Dāvids Fridmanis, Egija Zelča, Ilva Daugule, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.