Have a personal or library account? Click to login
Influence of SiO2 nanoparticles on gametic cells of lime trees from urban area detected by flow cytometry Cover

References

  1. Andrew, R. (1971). Exine pattern in the pollen of British species of Tilia. New Phytol., 70, 683–686.
  2. Ball, P. (2002). Natural strategies for the molecular engineer. Nanotechnology, 13, 15–28.
  3. Bargmann, B. O. R., Birnbaum, K. D. (2009). Positive fluorescent selection permits preside, rapid and in-depth overexpression analysis in plant protoplasts. Plant Physiol., 149, 1231–1239.
  4. Barnabás, B. (2003). Protocol for producing doubled haploid plants from anther culture of wheat (Triticum aestivum L.). In: Maluszymski M., Kasha, K.J., Forster, B. P., Szarejko I. (eds.). Doubled Haploid Production in Crop Plants. Kluwer Academic Publishers, Dordrecht, pp. 65–70.
  5. Bergmann, W., Neubert, P. (1976). Pflanzendiagnose und Pflanzenanalyse. Gustav Fisher Verlag, Jena. 711 S. (in German).
  6. Campos-Ramos, A., Aragon-Pina, A., Alastuey, A., Galindo-Estrada, I., Querol, X. (2011). Levels, compositions and source apportionment of rural background PM10 in western Mexico (state of Colima). Atmosph. Pollut. Res., 2, 409–417.
  7. Carter, A. D., Bonyadi, R., Gifford, M. L. (2013). The use of fluorescence-activated cell sorting in studying plant development and environmental responses. J. Dev. Biol., 57, 545–552.
  8. Cekstere, G. (2011). Vides faktoru ietekme uz Holandes liepu (Tilia x vulgaris) vitalitāti Rīgas ielu apstādījumos [Environmental factor influence on Commone lime (Tilia x vulgaris) vitality in street greenery of Rīga]. PhD thesis. Rīga: LU Akadēmiskais apgāds, p. 225 (in Latvian).
  9. Cekstere, G., Osvalde, A. (2013). A study of chemical characteristics of soil in relation to street trees status in Rīga (Latvia). Urban Forestry and Urban Greening, 12 (1), 69–78.
  10. Cekstere, G., Osvalde, A., Elferts, D., Rose, C., Lucas, F., Voillenweider, P. (2020). Salt accumulation and effects within foliage of Tilia x vulgaris trees from the street greenery of Riga, Latvia. Sci. Total Environ., 747, 140921. https://doi.org/10.1016/j.scitotenv.2020.140921.
  11. Cekstere, G., Osvalde, A., Karlsons, A., Nollendorfs, V., Paegle, G. (2005). The effect of urban environment on the mineral nutrition status of street trees in Rīga, the problems and possible solution. Acta Universitatis Latviensis, Earth & Environment Sciences, 685, 7–20.
  12. Cekstere, G., Osvalde, A., Nikodemus, O. (2010). Influence of de-icing salt on K supply and street trees ecological status in Rīga, Latvia. In: Rauch, S., Morrison, G. M., Monzón, A. (eds.). Highway and Urban Environment, Aliance for Global Sustainability, Book Series 17, Proceedings of the 9th Highway and Urban Environment Symposium, Springer, pp. 337–346.
  13. Chambers, T. C., Godwin, H. (1971). Scanning electron microscopy of Tilia pollen. New Phytol., 70, 687–692.
  14. Civáň, P., Švec, M., Hauptvogel, P. (2011). On the coevolution of transposable elements and plant genomes. J. Bot., 2011, 893546. http://dx.doi.org/10.1155/2011/893546.
  15. Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nat. Biotechnol., 10 (21), 1166–1170.
  16. Craul, P. J. (1999). Urban Soils. Applications and Practices. J. Wiley, New York. 366 pp.
  17. Dimkpa, C. O., McLean, J. E., Latta, D .E., Manangó, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., Anderson, A. J. (2012). CuO and ZnO nanoparticles; phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res., 14 (9), 1–15.
  18. Djaković, T., Jovanović, Z. (2003). The role of cell wall peroxidase in the inhibition of leaf and fruit growth. Bulg. J. Plant Physiol. Special Issue, 264–272.
  19. Dožel, J., Greilhuber, J., Suda, J. (2007). Flow cytometry with plants: An overview. In: Doležel, J., Greilhuber, J., Suda J. (eds.). Flow Cytometry with Plant Cells. Wiley- VCH Verlag GmbH&Co. KGaA, pp. 41–65.
  20. Duan, J., Yu, Y., Yu, Y., Li, Y., Huang, P., Zhou, X., Peng, S., Sun, Z. (2014). Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Particle Fibre Toxicol., 11 (50). http://www.particleandfibretoxicology.com/content/11/1/50.
  21. European Environment Agency (2014). Air quality in Europe – 2014. EEA Report No 5/2014, Publications Office of the European Union, 2014. 82 pp.
  22. Galbraith, D. W. (2010). Flow cytometry and fluorescence-activated cell sorting in plants: The past, present, and future. Biomédica, 30, 65–70.
  23. Hagen-Thorn, A., Callesen, I., Armolaitis, K., Nihlglrb, B. (2004). The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manag., 195, 373–384.
  24. Hektors, K., Prinsen, E., De Coen, W., Jansen, M. A. K., Guisez, Y. (2007). Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol., 175, 255–270.
  25. Kalendar, R., Antonius, K., Smýkal, P., Schulman, A. H. (2010). iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet., 121, 1419–1430.
  26. Kalteh, M., Zarrin, T. A., Shahram, A., Maryam, M. A., Alireza, F. N. (2014). Effect of silica nanoparticles on basil (Ocimum basili-cum) under salinity stress. J. Chem. Health Risks, 4 (3), 49–55.
  27. Kan, A. T., Tomson, M. B. (1999). Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ. Toxicol. Chem., 9, 253–263.
  28. Karim, Z., Adnan, R., Ansari, M. S. (2012). Low concentration of silver nanoparticles not only enhances the activity of horseradish peroxidase but alter the structure also. PLoS ONE, 7 (7), e41422.
  29. Kasha, K. J., Simon, E., Oro, R., Shim, Y. S. (2003). Barley isolated microspore culture protocol. In: Maluszynski, M., Kasha, K. J., Forster, B. P., Szarejko, I. (eds.). Doubled Haploid Production in Crop Plants. Manual. Kluwer Acad. Publ., Dordrecht, Boston, London, pp. 43–47.
  30. Kimura, H. (2005). Histone dynamics in living cells revealed by photobleaching. DNA Repair (Amst.), 4, 939–950.
  31. Klaus, V. H., Kiehl, K. (2021). A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol., 52, 82–94. https://doi.org/10.1016/j.baae.2021.02.010.
  32. Kļaviņa, D., Grauda, D., Priede, A., Rashal, I. (2014). Habitat diversity and genetic variability of Cypripedium calceolus in Latvia. Mirek, Z., Nikel, A., Paul, W. (eds). Actions for Wild Plants. Committee on Nature Conservation. Polish Academy of Sciences, Kraków, pp. 91–97.
  33. Kokina, I., Sļedevskis, Ē., Gerbreders, V., Grauda, D., Jermaļonoka, M., Valaine, K., Gavarāne I., Pigiņka I., Filipovičs M., Rashal I. (2013). Reaction of flax (Linum usitatissimum L.) calli culture to supplement of medium by carbon nanoparticles. Proc. Latvian Acad. Sci. Section B, 66, 220–209.
  34. Kosiba, P. (2008). Variability of morphometric leaf traits in small-leaved linden (Tilia cordata Mill.) under the influence of air pollution. Acta Societatis Botanicorum Poloniae, 77 (2), 125–137.
  35. Kostina, E, Wulff, A, Julkunen-Tiitto, R. (2001). Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees, 15, 483–491.
  36. Krūmiņš J. (2023). Iedzīvotāju skaits Latvijā [Number of inhabitants in Latvia]. National Encyclopaedia. https://enciklopedija.lv/skirklis/10754-iedz%C4%ABvot%C4%81ju-skaits-Latvij%C4%81 (accessed 25.09.2024).
  37. Kumar, P., Pirjola, L., Ketzel, M., Harrison, R. M. (2013). Nanoparticle emissions from 11 non-vehicle exhaust sources: A review. Atmosph. Environ., 67, 252–277.
  38. Lewis M. (2011). Agarose gel electrophoresis (basic method). Biological Protocols. http://www.methodbook.net/dna/agarogel.html.
  39. Lin, D., Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Poll., 150, 243–250.
  40. Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov, A. (2010). Interaction between engineered nananoparticles (ENPs) and plants. Phytotoxicity, uptake and accumulation. Sci. Total Environ., 408, 3053–3061.
  41. Martinez, M. M., Reif, R. D., Pappas, D. (2010). Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Anal. Bioanal. Chem., 396, 1177–1185.
  42. Matsunaga, T., Togo, H., Kikuchi, T., Tanaka, T. (2000). Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol. Bioeng., 70, 704–709.
  43. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stress. Plant Cell Environ., 33, 453–467.
  44. Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490–498.
  45. Mizutani, T., Arai, K., Miyamoto, M., Kimura, Y. (2006). Application of silica-containing nanocomposite emulsion to wall paint: A new environmentally safe paint of high performance. Progr. Org. Coatings, 55, 276–283.
  46. Monica, R. C., Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62 (2), 161–165.
  47. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plantarium, 15, 473–497.
  48. Nabais, C., Feritas, H., Hagemeyer, J. (1999). Dendroanalysis: A tool for biomonitoring environmental pollution. Sci. Total Environ., 232 (1–2), 33–37.
  49. Neumann, M, Gabel, D. (2002). Simple method for reduction of autofluorescence in fluorescence microscopy. J. Histochem. Cytochem., 50 (3), 437–439.
  50. Niemela, J. (2004). Environmental problems and policies in growing urban areas: A multidisciplinary approach. Boreal Environ. Res., 9 (6), 457–458.
  51. Niinemets, Ü., Kull, O., Tenhunen, J. D. (1999). Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting ceciduous trees. Int. J. Plant Sci., 160 (5), 837–848.
  52. Official statistics portal (2024). https://stat.gov.lv/en/search?Search=%22towns%22&DataSource=%22data%22 (accessed 25.09.2024).
  53. Osvalde, A. (2011). Optimization of plant mineral nutrition revisited: The role of plant rquirements, nutrient interactions, and soil properties in a fertilization management. Environ. Experi. Biol., 9, 1–8.
  54. Page, A. L., Miller, R. H., Keeney, D. R. (1982). Methods of Soil Analysis. 2nd edn. American Society of Agronomy, Madison, WI. 1159 pp.
  55. Peykarestan, B., Seify, M. (2012). UV irradiation effects on seed germination and growth, protein content, peroxidaseand protease activity in red bean. Int. Res. J. Appl. Basic Sci., 3 (1), 92–102.
  56. Reijnders, L. (2012). Hazards of TiO2 and Amorphous SiO2 Nanoparticles. In: Toxic Effects of Nanomaterials. Kahan, H., A, Arif, I. A. (eds.). Bentham Science Publishers, pp. 85–96.
  57. Reijnders, L. (2009). The release of TiO2 and SiO2 nanoparticles from nanocomposites Polymer Degrad. Stabil., 94, 873–876.
  58. Rinkis, G. J., Ramane, H. K., Kunickaya, T. A. (1987). Metodi analiza pochv i rasteniy [Methods of soil and plant analysis]. Zinātne, Rīga (in Russian).
  59. Sander, H., Elliku, J., Läänelaid, A., Reisner, V., Reisner, U., Rohtla, M., Sestakov, M. (2003). Urban tress of Tallinn, Estonia. Proc. Estonian Acad. Sci., Biology, Ecology 52 (4), 437–452.
  60. Sergio, L. C. Ferreira, Marcos A. Bezerra, Adilson S. Santos, Walter N. L. dos Santos, Cleber G. Novaes, Olivia M. C. de Oliveira, Michael L. Oliveira, Rui L. Garcia (2018). Atomic absorption spectrometry: A multi element technique. Trends Anal. Chem., 100, 1–6. https://doi.org/10.1016/j.trac.2017.12.012.
  61. Sjöman, H., Östberg, J., Bühler, O. (2012). Diversity and distribution of the urban tree population in ten major Nordic cities. Urban Forestry and Urban Greening, 11 (1), 31-39. 39 http://dx.doi.org/10.1016/j.ufug.
  62. Smýkal, P., Bačova-Karteszova, N., Kalendar, R., Corander, J., Schulman, A. H., Pavelek, M. (2011). Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor. Appl. Genet., 122, 1385–1397.
  63. Stapleton, A. E. (1992). Ultraviolet radiation and plants: Burning questions. The Plant Cell, 4, 1353–1358.
  64. Tenche-Constantinescu, A.-M., Lalescu, D.V., Popescu, S., Sarac, I., Petrescu, I., Petolescu, C., Camen, D., Horablaga, A., Popescu, C. A., Berar, C., Onisan E. (2024). Exploring the genetic landscape of Tilia spp. with molecular and statistical tools. Horticulturae, 10, 596. https://doi.org/10.3390/horticulturae10060596.
  65. Van Hoecke, K., De Schamphelaere, K. A. C., Vander Meeren, P., Licas, S., Janssen, C. R. (2008). Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ. Toxicol. Chem., 27, 410–420.
  66. Vigneswaran, N., Koh, S., Gillenwater, A. (2009). Incidental detection of an occult oral malignancy with autofluorescence imaging: A case report. Head Neck Oncol., 1 (37), www.headandneckoncology.org/conten/1/1/37.
  67. Veliu, A., Syla, A. (2008). Air pollution with particulate matter and heavy metals of Kosova thermal power plant. J. Int. Environ. Appl. Sci., 3 (4), 280–287.
  68. Vukich, M., Schulman, A. H., Giordani, T., Natali, L., Kalendar, R., Cavallini, A. (2009). Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor. Appl. Genet., 119, 1027–1238.
  69. Wang, J., Pui, D. Y. H. (2011). Characterization, exposure measurement and control for nanoscale particles in workplaces and on the road. J. Phys. Conf. Series, 304, 012008, 1–14.
  70. Wang, S. Q., Balagula, Y., Osterwalder, U. (2010). Photoprotection: A review of the current and future technologies. Dermatol. Ther., 23 (1), 31–47.
  71. Wei, C, Zhang, Y, Guo, J, Han, B, Yang, X, Yuan, J. (2010). Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J. Environ. Sci. (China), 22 (1), 155–60.
  72. Yeh, F. C., Yang, R. C., Boyle, T. B. J. (1999). POPGENE version 1.32, Microsoft Window-based free ware for population genetic analysis. Computer program and documentation distributed by University of Alberta and Centre for International Forestry Research, Alberta, Canada. http://www.ualberta.ca/;fyeh/index.htm.
  73. Yilmaz, S., Zengin, M. (2004). Monitoring environmental pollution in Erzurum by chemical analysis of Scott pine (Pinus sylvestris L.) needles. Environ. Int., 29, 1041–1047.
  74. You, M. K., Lim S.-H., Kim M.-J., Jeong Y. S., Lee M.-G., Ha S.-H. (2015). Improvement of the fluorescence intensity during a flow cytometric analysis for rice protoplasts by localization of a green fluorescent protein into chloroplasts. Int. J. Mol. Sci., 16, 788–804.
  75. Zajzon, N., Marton, E., Sipos, P., Kristaly, F., Nemeth, T., Kis-Kovacs, V., Tamás, G. Weiszburg, T. G. (2013). Integrated mineralogical and magnetic study of magnetic airborne particles from potential pollution sources in industrial-urban environment. Carpathian J. Earth Environ. Sci., 8 (1), 179–186.
DOI: https://doi.org/10.2478/prolas-2024-0052 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 362 - 371
Published on: Jan 2, 2025
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Dace Grauda, Aleksejs Kataševs, Inta Belogrudova, Gunta Čekstere-Muižniece, Dalius Butkauskas, Nikole Krasņevska, Inga Lasenko, Kārlis Žagata, Isaak Rashal, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.