Have a personal or library account? Click to login
Approximate Solution of Optimal Pulse Control Problem Associated with the Heat Conduction Process Cover

Approximate Solution of Optimal Pulse Control Problem Associated with the Heat Conduction Process

Open Access
|Jan 2024

References

  1. Abdullayev, V. M. (2017). Identification of the function of response to loading for stationary systems. Cybern. Syst. Anal., 53 (2), 417–425.
  2. Abdullayev, V. M. (2018). Numerical solution to optimal control problems with multipoint and integral conditions. Proc. Inst. Math. Mech., 44 (2), 171–186.
  3. Abdullayev, V. M., Aida-zade, K. R. (2018). Numerical solution of the problem of determining the number and locations of state observation points in feedback control of a heating process. Comput. Math. Math. Phys., 58 (1), 78–89.
  4. Aida-zade, K. R., Abdullayev, V. M. (2017). Optimizing placement of the control points at synthesis of the heating process control. Autom. Remote Control, 78 (9), 1585–1599.
  5. Aida-zade, K. R., Abdullayev, V. M. (2020). Control synthesis for temperature maintaining process in a heat supply problem. Cybern. Syst. Anal., 56 (3), 380–391.
  6. Aliyev, F. A., Mutallimov, M. M., Askerov, I. M. (2010). Asymptotic method of constructing optimal modes for gaslift process [Алиев, Ф. A., Муталлимов, M. M., Аскеров, И. M. Асимптотический метод решения задачи построения оптимальных режимов газ-лифтного процесса]. Dokladi NAN, Azerbaijan, 66 (1), 26–33 (in Russian).
  7. Bressan, A., Rampazzo, F. (1991). Impulsive control system with commutative vector fields. J. Optim. Theory Appl., 71 (1), 67–83.
  8. Bressan, A., Rampazzo F. (1994). Impulsive control systems without commutativity assumptions. J. Optim. Theory Appl., 81 (3), 435–457.
  9. Dykhta, V. A. (1995). Maximum principle for optimal pulse processes with restrictions on the image of control measure [Дыхта, B.A. Принцип максимума для оптимальных импульсных процессов при ограничениях на образ управляющей меры]. Optimizatsiya, upravleniye, intellekt. Jurn. Vseros. Assoc. Matem. Programmirovaniya v ANN, No. 1, 100–109 (in Russian)
  10. Dykhta, V. A., Samsonyuk, O. N. (2000). Optimal pulse control with applications [Дыхта, В. А., Самсонюк, О. H. Оптимальное импульсное управление с приложениями]. Fizmatlit, Moscow. 256 pp. (in Russian).
  11. Dykhta, V. A., Samsonyuk, O. N. (2014). The canonical theory of the impulse process optimality. J. Math. Sci., 199 (6), 646–653.
  12. Mamedov, R. S. (2006). Pulse control of process of heat conductivity with minimal energy. In: Proceedings of the International Conference “Problems of Cybernetics and Informatics”. Vol. II. Baku, pp. 191–193.
  13. Mamedov, R. S., Qasimov, S. Y. (2017). Solution of the synthesis problem of boundary optimal rod cooling process with a heat conductive viscosity. EUREKA: Phys Eng., 24, 42–49.
  14. Samsonyuk, O. N. (2015). Invariant sets for the nonlinear impulsive control systems. Autom. Remote Control, 76 (3), 405–418.
  15. Sharifov, Y. A. (2014). Optimal control problem by impulsive differential equations with nonlocal boundary conditions. Differential Equation, 50 (3), 401–409.
  16. Yegorov, A. I. (1978). Optimal control for thermal and diffusion processes [Егоров, А. И. Оптимальное управление тепловыми и диффузионными процессами]. Nauka, Moscow. 460 pp. (in Russian).
  17. Yegorov, A. I. (2004). Basics of control theory [Егоров, А. И. Основы теории управления]. Fizmatlit, Moscow. 504 pp. (in Russian).
DOI: https://doi.org/10.2478/prolas-2023-0030 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 263 - 270
Submitted on: Nov 24, 2023
Accepted on: Nov 24, 2023
Published on: Jan 6, 2024
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 Rashad Mammadov, Sardar Gasimov, Sevinj Karimova, Ibrahim Abbasov, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.