Have a personal or library account? Click to login
Development of a Marker within the Candidate Un8 True Loose Smut Resistance Gene for Use in Barley Breeding Cover

Development of a Marker within the Candidate Un8 True Loose Smut Resistance Gene for Use in Barley Breeding

Open Access
|Sep 2023

References

  1. Asaad, S., Koudsieh, S., Najjar, D. (2013). Improved method for detecting Ustilago nuda in barley seed. Arch. Phytopathol. Plant Prot., 47 (2), 149–156.
  2. Andersen, E. J., Ali, S., Reese, R. N., Yen, Y., Neupane, S., Nepal, M. P. (2016). Diversity and evolution of disease resistance genes in Barley (Hordeum vulgare L.). Evol. Bioinform. Online, 12, 99–108.
  3. Chen, S., Rouse, M. N., Zhang, W., Zhang, X., Guo, Y., Briggs, J., Dubcovsky, J. (2020). Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytologist, 225 (2), 948–959.
  4. Collard, B. C. Y., Mackill, D. J. (2007). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B. Biol. Sci., 363, 557–572.
  5. Day, Li. (2013). Proteins from land plants: Potential resources for human nutrition and food security. Trends Food Sci. Technol., 32 (1), 25–42.
  6. Eckstein, P. E., Krasichynska, N., Voth, D., Duncan, S., Rossnagel, B., Scoles, G. (2002). Development of PCR-based markers for a gene (Un8) conferring true loose smut resistance in barley. Can. J. Plant Pathol., 24, 46–53.
  7. Gürel, F., Öztürk, Z. N., Uçarl, C., Rosellini, D. (2016). Barley genes as tools to confer abiotic stress tolerance in crops. Front Plant Sci., 3 (7), 1137.
  8. Haas, M., Schreiber, M., Mascher, M. (2019). Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol., 61 (3), 204–225.
  9. Idehen, E., Tang, Y., Sang, S. (2017). Bioactive phytochemicals in barley. J. Food Drug Anal. 25 (1), 148–161.
  10. Imathiu, S., Edwards, S., Ray, R., Back, M. (2014). Artificial inoculum and inoculation techniques commonly used in the investigation of Fusarium head blight in cereals. Acta Phytopathologica et Entomologica Hungarica, 49 (2), 129–139.
  11. Izydorczyk, M. S., McMillan, T. (2011). Chapter 31, Barley β-glucans and fiber-rich fractions as functional ingredients in flat and pan breads. Academic Press, 337–353.
  12. Klymiuk, V., Yaniv, E., Huang, L., Raats, D., Fatiukha, A., Chen, S., Feng, L., Frenkel, Z., Krugman, T., Lidzbarsky, G., Chang, W. (2018). Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Commun., 9 (1), 1–12.
  13. Lara-Serrano, M., Angulo, F. S., Negro, M. J., Morales-dela Rosa, S., Campos-Martin, J. M., Fierro, J. L. G. (2018). Second generation bioethanol production combining simultaneous fermentation and saccharification of ILs pretreated barley straw. ACS Sust. Chem. Eng., 6 (5), 7086–7095.
  14. Lu, P., Guo, L., Wang, Z., Li, B., Li, J., Li, Y., Qiu, D., Shi, W., Yang, L., Wang, N., Guo, G. (2020). A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nature Commun., 11 (1), 1–11.
  15. Legkun, I. B. (2016). Breeding and evaluation of winter barley varieties for group resistance to smut diseases. Russ. J. Genet. Appl. Res., 6, 264–269.
  16. Malik, M. M. S., Batts, C. C. V. (1960). The development of loose smut (Ustilago nuda) in the barley plant, with observations on spore formation in nature and in culture. Trans. Brit. Mycol. Soc., 43 (1), 126–131, IN8–IN9.
  17. Munck, L. (1993). On the utilization of renewable plant resources. In: Hayward, M. D., Bosemark, N. O., Romagosa, I., Cerezo, M. (eds.). Plant Breeding, Principles and Prospects. Springer Dordrecht, pp. 500–523.
  18. Mueller, K. J. (2006). Susceptibility of German spring barley cultivars to loose smut populations from different European origins. Eur. J. Plant Pathol., 116, 145–153.
  19. Nadolska-Orczyk, A., Rajchel, I. K., Orczyk, W., Gasparis, S. (2017). Major genes determining yield-related traits in wheat and barley. Theor. Appl. Genet., 130 (6), 1081–1098.
  20. Nghiem, N., Hicks, K., Johnston, D., Senske, G., Kurantz, M., Li, M., Shetty, J., Konieczny-Janda, G. (2010). Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process. Biotech. Biofuels, 28 (3), 8.
  21. Panahi, H. K. S., Dehhaghi, M., Aghbashlo, M., Karimi, K., Tabatabaei, M. (2020). Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy, 145, 699–710.
  22. Pedersen, P. N. (1960). Methods of testing the pseudo-resistance of barley to infection by loose smut, Ustilago nuda (Jens.) Rostr. Acta Agric. Scand., 10, 312–332.
  23. Raj, K. J., Sanghamitra, N. (2010). Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotech. Mol. Biol. Rev., 5 (3), 51–60.
  24. Skoropad, W. P., Johnson, L. P. V. (1952) Inheritance of resistance to Ustieago nuda in barley. Canad. J. Bot., 30 (5), 525–536.
  25. Sharma, P., Longvah, T. (2019). Barley. In: Whole Grains. CRC Press, pp. 25–47.
  26. Wulff, E. G., Torres, S., Vigil, E. G. (2002). Protocol for DNA extraction from potato tubers. Plant. Mol. Biol. Rep. 20, 187.
  27. Wunderle, J., Leclerque, A., Schaffrath, U., Slusarenko, A., Koch, E. (2012). Assessment of the loose smut fungi (Ustilago nuda and U. tritici) in tissues of barley and wheat by fluorescence microscopy and real-time PCR. Eur. J. Plant Pathol. 133, 865–875.
  28. Zang, W., Eckstein, P. E., Colin, M., Voth, D., Himmelbach, A., Beier, S., Stein, N., Scoles, G. J., Beattie, A. D. (2015). Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene. Theor. Appl. Genet., 128 (7) 1343–1357.
  29. Zhou, M. X. (2010). Barley production and consumption. In: Zhang, G., Li, C. (eds.) Genetics and Improvement of Barley Malt Quality. Springer, pp. 1–17.
DOI: https://doi.org/10.2478/prolas-2023-0027 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 193 - 198
Submitted on: Aug 31, 2022
Accepted on: Aug 8, 2023
Published on: Sep 28, 2023
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 Vilnis Šķipars, Elīna Sokolova, Sanita Seile, Dainis Ruņģis, Linda Legzdiņa, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.