References
- Acosta, K., Xu, J., Gilbert, S., Denison, E., Brinkman, T., Lebeis, S., Lam, E. (2020). Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS One, 15 (2), e0228560. https://doi.org/10.1371/journal.pone.0228560.
- Aliferis, K. A., Materzok, S., Paziotou, G. N., Chrysayi-Tokousbalides, M. (2009). Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. Chemosphere, 76 (7), 967–973. https://doi.org/10.1016/j.chemosphere.2009.04.025.
- Ater, M., Ali, N. A., Kasmi, H. (2006). Tolerance and accumulation of copper and chromium in two duckweed species: Lemna minor L. and Lemna gibba L. J. Water Sci., 19 (1), 57–67. https://doi.org/10.7202/012597ar.
- Brain, R. A., Solomon, K. R. (2007). A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nat. Protoc., 2, 979–987. https://doi.org/10.1038/nprot.2007.146.
- Bourge, M., Brown, S. C., Siljak-Yakovlev, S. (2018). Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Gen. Appl., 2 (2), 1–12. https://doi.org/10.31383/ga.vol2iss2pp1-12.
- Cao, X. H., Vu, G. T. . (2020). Cytogenetics, epigenetics and karyotype evolution of duckweeds. In: Cao, X. H., Fourounjian, P., Wang, W. (eds.) The Duckweed Genomes. Compendium of Plant Genomes. Springer, Cham., pp. 47–57.
- Cole, C. T., Voskuil, M. (1996). Population genetic structure in duckweed (Lemna minor, Lemnaceae). Can. J. Bot., 74 (2), 222–230. https://doi.org/10.1139/b96-026.
- Daud, M. K., Ali, S., Abbas, Z., Zaheer, I. E., Riaz, M. A., Malik, A., Hussain, A., Rizwan, M., Ziaur-Rehman, M., Zhu, S. J. (2018). Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J. Chem., 2018, 3951540. https://doi.org/10.1155/2018/3951540.
- Doležel, J., Greilhuber, J., Suda, J. (2007). Flow cytometry with plants: An overview. In: Doležel, J., Greilhuber, J., Suda J. (eds.) Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and Genomes. Wiley-VCH Verlag GmbH&Co. KGaA, pp. 41–65.
- Dufresne, F., Stift, M., Vergilino, R., Mable, B. K. (2014). Recent progress and challenges in population genetics of polyploid organisms: An overview of current state-of-the-art molecular and statistical tools. Mol. Ecol., 23 (1), 40–69. https://doi.org/10.1111/mec.12581.
- Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res., 32, 1792–1797. https://doi.org/10.1093/nar/gkh340.
- Galbraith, D.W. (2010). Flow cytometry and fluorescence-activated cell sorting in plants: The past, present, and future. Biomédica, 30, 65–70. https://doi.org/10.7705/biomedica.v30i0.824.
- Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401.
- Ishizawa, H., Kuroda, M., Morikawa, M., Ike, M. (2017). Evaluation of environmental bacterial communities as a factor affecting the growth of duck-weed Lemna minor. Biotechnol. Biofuels, 10, 62. https://doi.org/10.1186/s13068-017-0746-8.
- Kamyab, H., Chelliapan, S., Din, M. F. M., Shahbazian-Yassar, R., Rezania, S., Khademi, T., Kumar, A., Azimi, M. (2017). Evaluation of Lemna minor and Chlamydomonas to treat palm oil mill effluent and fertilizer production. J. Water Process Eng., 17, 229–236. https://doi.org/10.1016/j.jwpe.2017.04.007.
- Kastratović, V., Jaćimović, Ž., Durović, D., Bigović, M., Krivokapić, S. (2015). Lemna minor L. as bioindicator of heavy metal pollution in Skadar lake (Montenegro). Kragujevac J. Sci., 37, 123–134. https://doi.org/10.5937/KgJSci1537123K.
- Kostopoulou, S., Ntatsi, G., Arapis, G., Aliferis, K. A. (2020). Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. Chemosphere, 239, 124582. https://doi.org/10.1016/j.chemosphere.2019.124582.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096.
- Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- OECD (2006). Test No. 221: Lemna sp. Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. https://doi.org/10.1787/9789264016194-en.
- Pala, G., Selamoglu, Z., Caglar, M. (2019). Epiphytic algae of Lemna minor L. growing in natural habitat and aquarium. Iranian J. Fish. Sci., 18 (4), 1076–1082. https://dx.doi.org/10.22092/ijfs.2019.118470.
- Radulović, O., Petrić, M., Raspor, M., Stanojević, O., Janakiev, T., Tadić, V., Stanković, S. (2019a). Culture-dependent analysis of 16S rRNA sequences associated with the rhizosphere of Lemna minor and assessment of bacterial phenol-resistance: Plant/bacteria system for potential bioremediation. Part II. Polish J. Environ. Studies, 28 (2), 811–822. https://doi.org/10.15244/pjoes/81687.
- Radulović, O., Petrić, M., Raspor, M., Tadić, V., Jovanović, P., Zečević, V. (2019b). Assessment of in vitro multiplication of Lemna minor in the presence of phenol: Plant/bacteria system for potential bioremediation. Part I. Polish J. Environ. Studies, 28 (2), 803–809. https://doi.org/10.15244/pjoes/84921.
- Radulović, O., Stanković, S., Uzelac, B., Tadić, V., Trifunović-Momčilov, M., Lozo J., Marković,M. (2020). Phenol removal capacity of the common duckweed (Lemna minor L.) and six phenol-resistant bacterial strains from its rhizosphere: In vitro evaluation at high phenol concentrations. Plants, 9, 599. https://doi.org/10.3390/plants9050599.
- Salmen, S. H., Alharbi, S. A., Faden, A. A., Wainwright, M. (2018). Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J. Biol. Sci., 25 (1), 105–110. https://doi.org/10.1016/j.sjbs.2017.07.006.
- Scherr, C., Simon, M., Spranger, J., Baumgartner, S. (2008). Test system stability and natural variability of a Lemna gibba L. bioassay. PLoS ONE, 3 (9), e3133. https://doi.org/10.1371/journal.pone.0003133.
- Stomp, A. M. (2005). The duckweeds: A valuable plant for biomanufacturing. Biotechnol. Annu. Rev., 11, 69–99. https://doi.org/10.1016/S1387-2656(05)11002-3.
- Thomson, E. L. S., Dennis, J. J. (2013). Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria. PLoS ONE, 8 (11), e80102. https://doi.org/10.1371/journal.pone.0080102.
- Van Hoeck, A., Horemans, N., Monsieurs, P., Cao, H. X., Vandenhove, H., Blust, R. (2015). The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechno-logical applications. Biotechnol. Biofuels, 8, 188. https://doi.org/10.1186/s13068-015-0381-1.
- Wang, W., Kerstetter, R. A., Michael, T. P. (2011). Evolution of genome size in duckweeds (Lemnaceae). J. Bot., 2011, 570319. https://doi.org/10.1155/2011/570319.
- Yamamoto, Y. T., Rajbhandari, N., Lin, X., Bergmann, B. A., Nishimura, Y., Stomp, A. M. (2001). Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cell. Devel. Biol. Plant, 37, 349–353. https://doi.org/10.1007/s11627-001-0062-6.
- Zhang, Y., Hu, Y., Yang, B., Ma, F., Lu, P., Li, L., Wan, C., Rayner, S., Chen, S. (2010). Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS ONE, 5 (10), e13527. https://doi.org/10.1371/journal.pone.0013527.