Have a personal or library account? Click to login
Antimutagenic 1,4-Dihydropyridine AV-153 Normalizes Expression of GLUT1, GLUT4, INOS, PARP1, and Gamma H2AX Histone in Myocardium of Rats with Streptozotocin Model of Diabetes Mellitus Cover

Antimutagenic 1,4-Dihydropyridine AV-153 Normalizes Expression of GLUT1, GLUT4, INOS, PARP1, and Gamma H2AX Histone in Myocardium of Rats with Streptozotocin Model of Diabetes Mellitus

Open Access
|May 2023

References

  1. Bagchi, R. A., Weeks, K. L. (2019). Histone deacetylases in cardiovascular and metabolic diseases. J. Mol. Cell. Cardiol., 130, 151–159.
  2. Buraka, E., Chen, C. Y., Gavare, M., Grube, M., Makarenkova, G., Nikolajeva, V., Bisenieks, I., Brūvere, I., Bisenieks, E., Duburs, G., Sjakste, N. (2014). DNA-binding studies of AV-153, an antimutagenic and DNA repair-stimulating derivative of 1,4-dihydropiridine. Chem. Biol. Interact., 220, 200–207.
  3. Chanda, D., Luiken, J. J. F. P., Glatz, J. F. C. (2016). Signalling pathways involved in cardiac energy metabolism. FEBS Lett., 590 (15), 2364–2374.
  4. Chen, Y., Du, J., Zhao, Y. T., Zhang, L., Lv, G., Zhuang, S., Qin, G., Zhao, T. C. (2015). Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc. Diabetol., 14, 99.
  5. Choi, S. Y., Jeong, H. J., Lim, H. G., Park, S. S., Kim, S. H., Kim, Y. J. (2012). Elimination of alpha-galxenoreactive epitope: alpha-galactosidase treatment of porcine heart valves. J. Heart. Valve Dis., 21, 387–397.
  6. Dislere, K., Rostoka, E., Bisenieks, E., Duburs, G., Paramonova, N., Sjakste, N. (2021). 1,4-dihydropyridine derivatives increase mRNA expression of Psma3, Psmb5, and Psmc6 in rats. Arh. Hig. Rada Toksikol. 72, 148–156.
  7. Faramoushi, M., Sasan, R. A., Sarraf, V. S., Karimi, P. (2016). Cardiac fibrosis and down regulation of GLUT4 in experimental diabetic cardiomyopathy are ameliorated by chronic exposures to intermittent altitude. J. Cardiovasc. Thorac. Res., 8 (1), 26–33.
  8. Faria, A., Persaud, S. J. (2017). Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol. Ther., 172, 50–62.
  9. Forbes, J. M., Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiol. Rev., 93, 137–188.
  10. Gilca, G.E., Stefanescu, G., Badulescu, O., Tanase, D. M., Bararu, I., Ciocoiu, M. (2017). Diabetic cardiomyopathy: Current approach and potential diagnostic and therapeutic targets. J. Diabetes. Res., 2017, 1310265.
  11. Henning, R. J., Bourgeois, M., Harbison, R. D. (2018). Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: Mechanisms of action and role in cardiovascular disorders. Cardiovasc. Toxicol., 18, 493–506.
  12. Isfort, M., Stevens, S. C. W., Schaffer, S., Jong, C. J., Wold, L. E. (2014). Metabolic dysfunction in diabetic cardiomyopathy. Heart. Fail. Rev., 19, 35–48.
  13. Ivanović-Matić, S., Bogojević, D., Martinović, V., Petrović, A., Jovanović-Stojanov, S., Poznanović, G., Grigorov, I. (2014). Catalase inhibition in diabetic rats potentiates DNA damage and apoptotic cell death setting the stage for cardiomyopathy. J. Physiol. Biochem., 70 (4), 947–959.
  14. Khullar, M., Cheema, B. S., Raut, S. K. (2017). Emerging evidence of epigenetic modifications in vascular complication of diabetes. Front. Endocrinol. (Lausanne), 8, 237.
  15. Leonova, E., Ošiņa, K., Duburs, G., Bisenieks, E., Germini, D., Vassetzky, Y., Sjakste, N. (2019). Metal ions modify DNA-protecting and mutagen-scavenging capacities of the AV-153 1,4-dihydropyridine. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 845, 403077.
  16. Leonova, E., Rostoka, E., Sauvaigo, S., Baumane. L., Selga, T., Sjakste, N. (2018). Study of interaction of antimutagenic 1,4-dihydropyridine AV-153-Na with DNA-damaging molecules and its impact on DNA repair activity. PeerJ., 6, e4609.
  17. Leonova, E., Shvirksts, K., Borisovs, V., Smelovs, E., Sokolovska, J., Bisenieks, E., Duburs, G., Grube, M., Sjakste, N. (2020). Spectroscopic and electrochemical study of interactions between DNA and different salts of 1,4-dihydropyridine AV-153. PeerJ, 8, e10061.
  18. Maack, C., Lehrke, M., Backs, J., Heinzel, F. R., Hulot, J. S., Marx, N., Paulus, W. J., Rossignol, P., Taegtmeyer, H., et al. (2018). Heart failure and diabetes: Metabolic alterations and therapeutic interventions: A state-of-the-art review from the translational research committee of the heart failure association-European society of cardiology. Eur. Heart. J., 39 (48), 4243–4254.
  19. Maria, Z., Campolo, A. R., Scherlag, B. J., Ritchey, J. W., Lacombe, V. A. (2018). Dysregulation of insulin-sensitive glucose transporters during insulin resistance-induced atrial fibrillation. Biochim. Biophys. Acta. Mol. Basis. Dis., 1864 (4 Pt A), 987–996.
  20. Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., Zuniga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol., 17 (1), 122.
  21. Osina, K., Leonova, E., Isajevs, S., Baumane, L., Rostoka, E., Sjakste, T., Bisenieks, E., Duburs, G., Vigante, B., Sjakste, N. (2017). Modifications of expression of genes and proteins involved in DNA repair and nitric oxide metabolism by carbatonides [disodium-2,6-dimethyl-1,4-dihydropyridine-3,5-bis(carbonyloxyacetate) derivatives] in intact and diabetic rats. Arh. Hig. Rada Toksikol. 68, 212–227.
  22. Osina, K., Rostoka, E., Isajevs, S., Sokolovska, J., Sjakste, T., Sjakste, N. (2016). Effects of an antimutagenic 1,4-dihydropyridine AV-153 on expression of nitric oxide synthases and DNA repair-related enzymes and genes in kidneys of rats with a streptozotocin model of dabetes mellitus. Basic. Clin. Pharmacol. Toxicol., 119 (5), 458–463.
  23. Ošiņa, K., Rostoka, E., Sokolovska, J., Paramonova, N., Bisenieks, E., Duburs, G., Sjakste, N., Sjakste, T. (2016). 1,4-Dihydropyridine derivatives without Ca2+-antagonist activity up-regulate Psma6 mRNA expression in kidneys of intact and diabetic rats. Cell Biochem. Funct. 34, 3–6.
  24. Pepin, M. E., Wende, A. R. (2019). Epigenetics in the development of diabetic cardiomyopathy. Epigenomics., 11 (5), 469–472.
  25. Qin, W. D., Liu, G. L., Wang, J., Wang, H., Zhang, J. N., Zhang, F., Ma, Y., Ji, X. Y., Li, C., Zhang, M. X. (2016). Poly (ADP-ribose) polymerase 1 inhibition protects cardiomyocytes from inflammation and apoptosis in diabetic cardiomyopathy. Oncotarget, 7 (24), 35618–35631.
  26. Ryabokon, N. I., Goncharova, R. I., Duburs, G., Hancock, R., Rzeszowska-Wolny, J. (2008). Changes in poly(ADP-ribose) level modulate the kinetics of DNA strand break rejoining. Mutat. Res., 637, 173–181.
  27. Ryabokon, N. I., Goncharova, R. I., Duburs, G., Rzeszowska-Wolny, J. (2005). A 1,4-dihydropyridine derivative reduces DNA damage and stimulates DNA repair in human cells in vitro. Mutat Res., 587 (1–2), 52–58.
  28. Ryabokon, N. I., Nikitchenko, N. V., Dalivelya, O. V., Goncharova, R. I., Duburs, G., Konopacka, M., Rzeszowska-Wolny, J. (2009). Modulation of cellular defense processes in human lymphocytes in vitro by a 1,4-dihydropyridine derivative. Mutat. Res., 679 (1–2), 33–38.
  29. Szablewski, L. (2017). Glucose transporters in healthy heart and in cardiac disease. Int J. Cardiol., 230, 70–75.
  30. Varga, Z. V., Giricz, Z., Liaudet, L., Hasko, G., Ferdinandy, P., Pacher, P. (2015). Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim. Biophys. Acta, 1852 (2), 232–242.
  31. von Lukowicz, T., Hassa, P. O., Lohmann, C., Borén, J., Braunersreuther, V., Mach, F., Odermatt, B., Gersbach, M., Camici, G. G., Stähli, B. E., et al. (2008). PARP1 is required for adhesion molecule expression in atherogenesis. Cardiovasc. Res. 78, 158–166.
  32. Waldman, M., Nudelman, V., Shainberg, A., Abraham, N. G., Kornwoski, R., Aravot, D., Arad, M., Hochhauser, E. (2018). PARP-1 inhibition protects the diabetic heart through activation of SIRT1-PGC-1α axis. Exp. Cell. Res., 373 (1–2), 112–118.
  33. Wang, J., Wang, S., Wang, J., Xiao, M., Guo, Y., Tang, Y., Zhang, J., Gu, J. (2021). Epigenetic regulation associated with sirtuin 1 in complications of diabetes mellitus. Frontiers Endocrinol., 11, 598012.
DOI: https://doi.org/10.2478/prolas-2023-0014 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 96 - 101
Submitted on: Feb 8, 2021
Accepted on: Mar 28, 2023
Published on: May 18, 2023
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 Evita Rostoka, Sergejs Isajevs, Jeļizaveta Sokolovska, Gunārs Duburs, Nikolajs Sjakste, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.