Have a personal or library account? Click to login
Identification of Altered Transcripts and Pathways in Triple Negative Breast Cancer Cover

References

  1. Albergaria, A., Paredes, J., Sousa, B., Milanezi, F., Carneiro, V., Bastos, J., Costa, S., Vieira, D., Lopes, N., Lam, E. W., Lunet, N., Schmitt, F. (2009). Expression of FOXA1 and GATA-3 in breast cancer: The prognostic significance in hormone receptor-negative tumours. Breast Cancer Res., 11 (3), R40. DOI: 10.1186/bcr2327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716509/.
  2. Asano, Y., Kashiwagi, S., Goto, W., Tanaka, S., Morisaki, T., Takashima, T., Noda, S., Onoda, N., Ohsawa, M., Hirakawa, K., Ohira, M. (2017). Expression and clinical significance of androgen receptor in triple-negative breast cancer. Cancers, 9 (1), 4. DOI: 10.3390/cancers9010004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295775/.
  3. Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E., Gianni, L. (2016). Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 13 (11), 674–690. https://doi.org/10.1038/nrclinonc.2016.66.10.1038/nrclinonc.2016.66546112227184417
  4. Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., Savage, M. I., Osborne, C. K., Hilsenbeck, S. G., Chang, J. C., Mills, G. B., Lau, C. C., Brown, P. H. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res., 21 (7), 1688–1698. DOI: 10.1158/1078-0432.CCR-14-0432. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362882/.
  5. Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 8 (Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11.10.1186/1752-0509-8-S4-S11429068725521941
  6. Chen, J., Bardes, E., Aronow, B., Jegga, A. (2009). ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucl. Acids Res., 37, W305-11. DOI: 10.1093/nar/gkp427. https://www.researchgate.net/publication/26236961_ToppGene_Suite_for_gene_list_enrichment_analysis_and_candidate_gene_prioritization.
  7. Cimino-Mathews, A., Subhawong, A. P., Elwood, H., Warzecha, H. N., Sharma, R., Park, B. H., Taube, J. M., Illei, P. B., Argani, P. (2013). Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum. Pathol., 44 (6), 959–965. DOI: 10.1016/j.humpath.2012.09.005. https://pubmed.ncbi.nlm.nih.gov/23260325/.10.1016/j.humpath.2012.09.005397817823260325
  8. Collins, L. C., Cole, K. S., Marotti, J. D., Hu, R., Schnitt, S. J., Tamimi, R. M. (2011). Androgen receptor expression in breast cancer in relation to molecular phenotype: Results from the Nurses’ Health Study. Mod. Pathol., 24 (7), 924–931. https://www.nature.com/articles/modpathol201154#ethics.
  9. Dai, X., Cheng, H., Chen, X., Li, T., Zhang, J., Jin, G., Cai, D., Huang, Z. (2019). FOXA1 is prognostic of triple negative breast cancers by transcriptionally suppressing SOD2 and IL6. Int. J. Biol. Sci., 15 (5), 1030–1041. DOI: 10.7150/ijbs.31009. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535797/.
  10. Dong, P., Yu, B., Pan, L., Tian, X., Liu, F. (2018). Identification of key genes and pathways in triple-negative breast cancer by integrated bioinformatics analysis. BioMed Res. Int., 2018, 2760918. DOI: org/10.1155/2018/2760918. https://www.hindawi.com/journals/bmri/2018/2760918/.
  11. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., Znaor, A., Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 144 (8), 1941–1953. https://doi.org/10.1002/ijc.31937.10.1002/ijc.3193730350310
  12. Gerratana, L., Basile, D., Buono, G., De Placido, S., Giuliano, M., Minichillo, S., Coinu, A., Martorana, F., De Santo, I., Del Mastro, L., De Laurentiis, M., Puglisi, F., Arpino, G. (2018). Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev., 68, 102–110. https://doi.org/10.1016/j.ctrv.2018.06.005.10.1016/j.ctrv.2018.06.00529940524
  13. Gucalp, A., Traina, T. A. (2010). Triple-negative breast cancer: Role of the androgen receptor. Cancer J. (Sudbury, Mass.), 16 (1), 62–65. DOI: 10.1097/PPO.0b013e3181ce4ae1. https://pubmed.ncbi.nlm.nih.gov/20164692/.20164692
  14. Guiu, S., Mollevi, C., Charon-Barra, C., Boissičre, F., Crapez, E., Chartron, E., Lamy, P. J., Gutowski, M., Bourgier, C., Romieu, G., Simony-Lafontaine, J., Jacot, W. (2018). Prognostic value of androgen receptor and FOXA1 co-expression in non-metastatic triple negative breast cancer and correlation with other biomarkers. Brit. J. Cancer, 119 (1), 76–79. DOI: 10.3390/cancers13040765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918092/.791809233673133
  15. Gupta, P. B., Kuperwasser, C. (2006). Contributions of estrogen to ER-negative breast tumor growth. J. Steroid Biochem. Mol. Biol., 102 (1–5), 71–78. DOI: 10.1016/j.jsbmb.2006.09.025. PMID: 17049443. https://www.sciencedirect.com/science/article/pii/S0960076006002706?via%3Dihub.17049443
  16. Hwang, K. T., Kim, J., Jung, J., Chang, J. H., Chai, Y. J., Oh, S. W., Oh, S., Kim, Y. A., Park, S. B., Hwang, K. R. (2019). Impact of breast cancer sub-types on prognosis of women with operable invasive breast cancer: A population-based study using SEER Database. Clin. Cancer Res., 25 (6), 1970–1979. https://doi.org/10.1158/1078-0432.CCR-18-2782.10.1158/1078-0432.CCR-18-278230559169
  17. Haffty, B. G., Yang, Q., Reiss, M., Kearney, T., Higgins, S. A., Weidhaas, J., Harris, L., Hait, W., Toppmeyer, D. (2006). Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J. Clin. Oncol., 24 (36), 5652–5657. DOI: 10.1200/JCO.2006.06.5664. https://ascopubs.org/doi/10.1200/JCO.2006.06.5664?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.17116942
  18. Ishibashi, Y., Ohtsu, H., Ikemura, M., Kikuchi, Y., Niwa, T., Nishioka, K., Uchida, Y., Miura, H., Aikou, S., Gunji, T., et al. (2017). Serum TFF1 and TFF3 but not TFF2 are higher in women with breast cancer than in women without breast cancer. Sci. Rep., 7 (1), 4846. DOI: 10.1038/s41598-017-05129-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501858/.550185828687783
  19. Jamidi, S. K., Hu, J., Aphivatanasiri, C., Tsang, J. Y., Poon, I. K., Li, J. J., Chan, S. K., Cheung, S. Y., Tse, G. M. (2020). Sry-related high-mobility-group/HMG box 10 (SOX10) as a sensitive marker for triple-negative breast cancer. Histopathology, 77 (6), 936–948. https://doi.org/10.1111/his.14118.10.1111/his.1411832304249
  20. Kesson, E. M., Allardice, G. M., George, W. D., Burns, H. J., Morrison, D. S. (2012). Effects of multidisciplinary team working on breast cancer survival: Retrospective, comparative, interventional cohort study of 13 722 women. Brit. Med. J. (Clin. Res. ed.), 344, e2718. https://doi.org/10.1136/bmj.e2718.10.1136/bmj.e2718333987522539013
  21. Kim, S., Moon, B. I., Lim, W., Park, S., Cho, M. S., Sung, S. H. (2016). Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Hum. Pathol., 55, 190–195. https://doi.org/10.1016/j.humpath.2016.04.013. https://www.sciencedirect.com/science/article/abs/pii/S0046817716300624?via%3Dihub.
  22. Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig., 121 (7), 2750–2767. DOI: 10.1172/JCI45014. https://www.jci.org/articles/view/45014.312743521633166
  23. Lehmann, B. D., Jovanović, B., Chen, X., Estrada, M. V., Johnson, K. N., Shyr, Y., Moses, H. L., Sanders, M. E., Pietenpol, J. A. (2016). Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PloS One, 11 (6), e0157368. DOI: 10.1371/journal.pone.0157368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911051/.491105127310713
  24. Li, L., Huang, H., Zhu, M., Wu, J. (2021). Identification of hub genes and pathways of triple negative breast cancer by expression profiles analysis. Cancer Manag. Res., 13, 2095–2104. DOI: 10.2147/CMAR.S295951. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935333/.793533333688252
  25. Liu, Z., Chen, S. (2010). ER regulates an evolutionarily conserved apoptosis pathway. Biochem. Biophys. Res. Comm., 400 (1), 34–38. DOI: 10.1016/j.bbrc.2010.07.132. https://www.sciencedirect.com/science/article/abs/pii/S0006291X10014658?via%3Dihub.20691160
  26. Madsen, J., Nielsen, O., Torn¸e, I., Thim, L., Holmskov, U. (2007). Tissue localization of human trefoil factors 1, 2, and 3. J. Histochem. Cytochem., 55 (5), 505–513. DOI: 10.1369/jhc.6A7100.2007. https://journals.sagepub.com/doi/10.1369/jhc.6A7100.2007?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.17242463
  27. Malorni, L., Shetty, P. B., De Angelis, C., Hilsenbeck, S., Rimawi, M. F., Elledge, R., Osborne, C. K., De Placido, S., Arpino, G. (2012). Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res. Treat., 136 (3), 795–804. DOI: 10.1007/s10549-012-2315-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513514/.351351423124476
  28. Masuda, H., Baggerly, K. A., Wang, Y., Zhang, Y., Gonzalez-Angulo, A. M., Meric-Bernstam, F., Valero, V., Lehmann, B. D., Pietenpol, J. A., Hortobagyi, G. N., Symmans, W. F., Ueno, N. T. (2013). Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin. Cancer Res., 19 (19), 5533–5540. DOI: 10.1158/1078-0432.CCR-13-0799. https://clincancerres.aacrjournals.org/content/19/19/5533.381359723948975
  29. Mehra, R., Varambally, S., Ding, L., Shen, R., Sabel, M. S., Ghosh, D., Chinnaiyan, A. M., Kleer, C. G. (2005). Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res., 65 (24), 11259–11264. DOI: 10.1158/0008-5472.CAN-05-2495. https://cancerres.aacrjournals.org/content/65/24/11259.long.16357129
  30. Mrklić, I., Pogorelić, Z., Capkun, V., Tomić, S. (2013). Expression of androgen receptors in triple negative breast carcinomas. Acta Histochem., 115 (4), 344–348. DOI: 10.1016/j.acthis.2012.09.006. https://www.sciencedirect.com/science/article/abs/pii/S0065128112001158?via%3Dihub.23031358
  31. Nallanthighal, S., Heiserman, J. P., Cheon, D. J. (2019). The role of the extracellular matrix in cancer stemness. Frontiers Cell Devel. Biol., 7, 86. https://doi.org/10.3389/fcell.2019.00086.10.3389/fcell.2019.00086662440931334229
  32. Reis-Filho, J. S., Pusztai, L. (2011). Gene expression profiling in breast cancer: Classification, prognostication, and prediction. Lancet, 378, 1812–1823. DOI: 10.1016/S0140-6736(11)61539-0. https://pubmed.ncbi.nlm.nih.gov/22098854/.22098854
  33. Sartorius, C. A., Hanna, C. T., Gril, B., Cruz, H., Serkova, N. J., Huber, K. M., Kabos, P., Schedin, T. B., Borges, V. F., Steeg, P. S., Cittelly, D. M. (2016). Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene, 35 (22), 2881–2892. DOI: 10.1038/onc.2015.353. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809801/.480980126411365
  34. Shaoxian, T., Baohua, Y., Xiaoli, X., Yufan, C., Xiaoyu, T., Hongfen, L., Rui, B., Xiangjie, S., Ruohong, S., Wentao, Y. (2017). Characterisation of GATA3 expression in invasive breast cancer: Differences in histological subtypes and immunohistochemically defined molecular subtypes. J. Clin. Pathol., 70 (11), 926–934. https://jcp.bmj.com/content/70/11/926.long.10.1136/jclinpath-2016-20413728428285
  35. Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 98 (19), 10869–10874. DOI: 10.1073/pnas.191367098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC58566/.5856611553815
  36. Yi, J., Ren, L., Li, D., Wu, J., Li, W., Du, G., Wang, J. (2020). Trefoil factor 1 (TFF1) is a potential prognostic biomarker with functional significance in breast cancers. Biomed. Pharmacother., 124, 109827. DOI: 10.1016/j.biopha.2020.109827. https://www.sciencedirect.com/science/article/pii/S0753332220300172.31986408
DOI: https://doi.org/10.2478/prolas-2023-0004 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 33 - 40
Submitted on: Dec 15, 2021
Accepted on: Aug 11, 2022
Published on: Mar 9, 2023
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 Elza Kuzņecova, Zanda Daneberga, Egija Berga-Švītiņa, Miki Nakazawa-Miklaševiča, Arvīds Irmejs, Jānis Gardovskis, Edvīns Miklaševičs, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.