References
- Albergaria, A., Paredes, J., Sousa, B., Milanezi, F., Carneiro, V., Bastos, J., Costa, S., Vieira, D., Lopes, N., Lam, E. W., Lunet, N., Schmitt, F. (2009). Expression of FOXA1 and GATA-3 in breast cancer: The prognostic significance in hormone receptor-negative tumours. Breast Cancer Res., 11 (3), R40. DOI: 10.1186/bcr2327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716509/.
- Asano, Y., Kashiwagi, S., Goto, W., Tanaka, S., Morisaki, T., Takashima, T., Noda, S., Onoda, N., Ohsawa, M., Hirakawa, K., Ohira, M. (2017). Expression and clinical significance of androgen receptor in triple-negative breast cancer. Cancers, 9 (1), 4. DOI: 10.3390/cancers9010004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295775/.
- Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E., Gianni, L. (2016). Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 13 (11), 674–690. https://doi.org/10.1038/nrclinonc.2016.66.10.1038/nrclinonc.2016.66546112227184417
- Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., Savage, M. I., Osborne, C. K., Hilsenbeck, S. G., Chang, J. C., Mills, G. B., Lau, C. C., Brown, P. H. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res., 21 (7), 1688–1698. DOI: 10.1158/1078-0432.CCR-14-0432. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362882/.
- Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 8 (Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11.10.1186/1752-0509-8-S4-S11429068725521941
- Chen, J., Bardes, E., Aronow, B., Jegga, A. (2009). ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucl. Acids Res., 37, W305-11. DOI: 10.1093/nar/gkp427. https://www.researchgate.net/publication/26236961_ToppGene_Suite_for_gene_list_enrichment_analysis_and_candidate_gene_prioritization.
- Cimino-Mathews, A., Subhawong, A. P., Elwood, H., Warzecha, H. N., Sharma, R., Park, B. H., Taube, J. M., Illei, P. B., Argani, P. (2013). Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum. Pathol., 44 (6), 959–965. DOI: 10.1016/j.humpath.2012.09.005. https://pubmed.ncbi.nlm.nih.gov/23260325/.10.1016/j.humpath.2012.09.005397817823260325
- Collins, L. C., Cole, K. S., Marotti, J. D., Hu, R., Schnitt, S. J., Tamimi, R. M. (2011). Androgen receptor expression in breast cancer in relation to molecular phenotype: Results from the Nurses’ Health Study. Mod. Pathol., 24 (7), 924–931. https://www.nature.com/articles/modpathol201154#ethics.
- Dai, X., Cheng, H., Chen, X., Li, T., Zhang, J., Jin, G., Cai, D., Huang, Z. (2019). FOXA1 is prognostic of triple negative breast cancers by transcriptionally suppressing SOD2 and IL6. Int. J. Biol. Sci., 15 (5), 1030–1041. DOI: 10.7150/ijbs.31009. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535797/.
- Dong, P., Yu, B., Pan, L., Tian, X., Liu, F. (2018). Identification of key genes and pathways in triple-negative breast cancer by integrated bioinformatics analysis. BioMed Res. Int., 2018, 2760918. DOI: org/10.1155/2018/2760918. https://www.hindawi.com/journals/bmri/2018/2760918/.
- Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., Znaor, A., Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 144 (8), 1941–1953. https://doi.org/10.1002/ijc.31937.10.1002/ijc.3193730350310
- Gerratana, L., Basile, D., Buono, G., De Placido, S., Giuliano, M., Minichillo, S., Coinu, A., Martorana, F., De Santo, I., Del Mastro, L., De Laurentiis, M., Puglisi, F., Arpino, G. (2018). Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev., 68, 102–110. https://doi.org/10.1016/j.ctrv.2018.06.005.10.1016/j.ctrv.2018.06.00529940524
- Gucalp, A., Traina, T. A. (2010). Triple-negative breast cancer: Role of the androgen receptor. Cancer J. (Sudbury, Mass.), 16 (1), 62–65. DOI: 10.1097/PPO.0b013e3181ce4ae1. https://pubmed.ncbi.nlm.nih.gov/20164692/.20164692
- Guiu, S., Mollevi, C., Charon-Barra, C., Boissičre, F., Crapez, E., Chartron, E., Lamy, P. J., Gutowski, M., Bourgier, C., Romieu, G., Simony-Lafontaine, J., Jacot, W. (2018). Prognostic value of androgen receptor and FOXA1 co-expression in non-metastatic triple negative breast cancer and correlation with other biomarkers. Brit. J. Cancer, 119 (1), 76–79. DOI: 10.3390/cancers13040765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918092/.791809233673133
- Gupta, P. B., Kuperwasser, C. (2006). Contributions of estrogen to ER-negative breast tumor growth. J. Steroid Biochem. Mol. Biol., 102 (1–5), 71–78. DOI: 10.1016/j.jsbmb.2006.09.025. PMID: 17049443. https://www.sciencedirect.com/science/article/pii/S0960076006002706?via%3Dihub.17049443
- Hwang, K. T., Kim, J., Jung, J., Chang, J. H., Chai, Y. J., Oh, S. W., Oh, S., Kim, Y. A., Park, S. B., Hwang, K. R. (2019). Impact of breast cancer sub-types on prognosis of women with operable invasive breast cancer: A population-based study using SEER Database. Clin. Cancer Res., 25 (6), 1970–1979. https://doi.org/10.1158/1078-0432.CCR-18-2782.10.1158/1078-0432.CCR-18-278230559169
- Haffty, B. G., Yang, Q., Reiss, M., Kearney, T., Higgins, S. A., Weidhaas, J., Harris, L., Hait, W., Toppmeyer, D. (2006). Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J. Clin. Oncol., 24 (36), 5652–5657. DOI: 10.1200/JCO.2006.06.5664. https://ascopubs.org/doi/10.1200/JCO.2006.06.5664?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.17116942
- Ishibashi, Y., Ohtsu, H., Ikemura, M., Kikuchi, Y., Niwa, T., Nishioka, K., Uchida, Y., Miura, H., Aikou, S., Gunji, T., et al. (2017). Serum TFF1 and TFF3 but not TFF2 are higher in women with breast cancer than in women without breast cancer. Sci. Rep., 7 (1), 4846. DOI: 10.1038/s41598-017-05129-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501858/.550185828687783
- Jamidi, S. K., Hu, J., Aphivatanasiri, C., Tsang, J. Y., Poon, I. K., Li, J. J., Chan, S. K., Cheung, S. Y., Tse, G. M. (2020). Sry-related high-mobility-group/HMG box 10 (SOX10) as a sensitive marker for triple-negative breast cancer. Histopathology, 77 (6), 936–948. https://doi.org/10.1111/his.14118.10.1111/his.1411832304249
- Kesson, E. M., Allardice, G. M., George, W. D., Burns, H. J., Morrison, D. S. (2012). Effects of multidisciplinary team working on breast cancer survival: Retrospective, comparative, interventional cohort study of 13 722 women. Brit. Med. J. (Clin. Res. ed.), 344, e2718. https://doi.org/10.1136/bmj.e2718.10.1136/bmj.e2718333987522539013
- Kim, S., Moon, B. I., Lim, W., Park, S., Cho, M. S., Sung, S. H. (2016). Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Hum. Pathol., 55, 190–195. https://doi.org/10.1016/j.humpath.2016.04.013. https://www.sciencedirect.com/science/article/abs/pii/S0046817716300624?via%3Dihub.
- Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig., 121 (7), 2750–2767. DOI: 10.1172/JCI45014. https://www.jci.org/articles/view/45014.312743521633166
- Lehmann, B. D., Jovanović, B., Chen, X., Estrada, M. V., Johnson, K. N., Shyr, Y., Moses, H. L., Sanders, M. E., Pietenpol, J. A. (2016). Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PloS One, 11 (6), e0157368. DOI: 10.1371/journal.pone.0157368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911051/.491105127310713
- Li, L., Huang, H., Zhu, M., Wu, J. (2021). Identification of hub genes and pathways of triple negative breast cancer by expression profiles analysis. Cancer Manag. Res., 13, 2095–2104. DOI: 10.2147/CMAR.S295951. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935333/.793533333688252
- Liu, Z., Chen, S. (2010). ER regulates an evolutionarily conserved apoptosis pathway. Biochem. Biophys. Res. Comm., 400 (1), 34–38. DOI: 10.1016/j.bbrc.2010.07.132. https://www.sciencedirect.com/science/article/abs/pii/S0006291X10014658?via%3Dihub.20691160
- Madsen, J., Nielsen, O., Torn¸e, I., Thim, L., Holmskov, U. (2007). Tissue localization of human trefoil factors 1, 2, and 3. J. Histochem. Cytochem., 55 (5), 505–513. DOI: 10.1369/jhc.6A7100.2007. https://journals.sagepub.com/doi/10.1369/jhc.6A7100.2007?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.17242463
- Malorni, L., Shetty, P. B., De Angelis, C., Hilsenbeck, S., Rimawi, M. F., Elledge, R., Osborne, C. K., De Placido, S., Arpino, G. (2012). Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res. Treat., 136 (3), 795–804. DOI: 10.1007/s10549-012-2315-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513514/.351351423124476
- Masuda, H., Baggerly, K. A., Wang, Y., Zhang, Y., Gonzalez-Angulo, A. M., Meric-Bernstam, F., Valero, V., Lehmann, B. D., Pietenpol, J. A., Hortobagyi, G. N., Symmans, W. F., Ueno, N. T. (2013). Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin. Cancer Res., 19 (19), 5533–5540. DOI: 10.1158/1078-0432.CCR-13-0799. https://clincancerres.aacrjournals.org/content/19/19/5533.381359723948975
- Mehra, R., Varambally, S., Ding, L., Shen, R., Sabel, M. S., Ghosh, D., Chinnaiyan, A. M., Kleer, C. G. (2005). Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res., 65 (24), 11259–11264. DOI: 10.1158/0008-5472.CAN-05-2495. https://cancerres.aacrjournals.org/content/65/24/11259.long.16357129
- Mrklić, I., Pogorelić, Z., Capkun, V., Tomić, S. (2013). Expression of androgen receptors in triple negative breast carcinomas. Acta Histochem., 115 (4), 344–348. DOI: 10.1016/j.acthis.2012.09.006. https://www.sciencedirect.com/science/article/abs/pii/S0065128112001158?via%3Dihub.23031358
- Nallanthighal, S., Heiserman, J. P., Cheon, D. J. (2019). The role of the extracellular matrix in cancer stemness. Frontiers Cell Devel. Biol., 7, 86. https://doi.org/10.3389/fcell.2019.00086.10.3389/fcell.2019.00086662440931334229
- Reis-Filho, J. S., Pusztai, L. (2011). Gene expression profiling in breast cancer: Classification, prognostication, and prediction. Lancet, 378, 1812–1823. DOI: 10.1016/S0140-6736(11)61539-0. https://pubmed.ncbi.nlm.nih.gov/22098854/.22098854
- Sartorius, C. A., Hanna, C. T., Gril, B., Cruz, H., Serkova, N. J., Huber, K. M., Kabos, P., Schedin, T. B., Borges, V. F., Steeg, P. S., Cittelly, D. M. (2016). Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene, 35 (22), 2881–2892. DOI: 10.1038/onc.2015.353. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809801/.480980126411365
- Shaoxian, T., Baohua, Y., Xiaoli, X., Yufan, C., Xiaoyu, T., Hongfen, L., Rui, B., Xiangjie, S., Ruohong, S., Wentao, Y. (2017). Characterisation of GATA3 expression in invasive breast cancer: Differences in histological subtypes and immunohistochemically defined molecular subtypes. J. Clin. Pathol., 70 (11), 926–934. https://jcp.bmj.com/content/70/11/926.long.10.1136/jclinpath-2016-20413728428285
- Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 98 (19), 10869–10874. DOI: 10.1073/pnas.191367098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC58566/.5856611553815
- Yi, J., Ren, L., Li, D., Wu, J., Li, W., Du, G., Wang, J. (2020). Trefoil factor 1 (TFF1) is a potential prognostic biomarker with functional significance in breast cancers. Biomed. Pharmacother., 124, 109827. DOI: 10.1016/j.biopha.2020.109827. https://www.sciencedirect.com/science/article/pii/S0753332220300172.31986408