Have a personal or library account? Click to login
Dominating taxonomic composition of the early life gut microbiota and influencing factors in infants up to seven months of age in Latvia Cover

Dominating taxonomic composition of the early life gut microbiota and influencing factors in infants up to seven months of age in Latvia

Open Access
|Dec 2022

References

  1. Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Björkstén, B., Engstrand, L., Jenmalm, M. C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exper. Allergy, 44 (6), 842–850. https://doi.org/10.1111/cea.1225310.1111/cea.1225324330256
  2. Arumugam, M., Raes, J., Pelletier, E., le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J.-M., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473 (7346), 174–180. https://doi.org/10.1038/nature0994410.1038/nature09944372864721508958
  3. Azad, M. B., Konya, T., Maughan, H., Guttman, D. S., Field, C. J., Chari, R. S., Sears, M. R., Becker, A. B., Scott, J. A., Kozyrskyj, A. L. (2013). Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. Canad. Med. Assoc. J., 185 (5), 385–394. https://doi.org/10.1503/cmaj.12118910.1503/cmaj.121189360225423401405
  4. Boxberger, M., Cenizo, V., Cassir, N., la Scola, B. (2021). Challenges in exploring and manipulating the human skin microbiome. Microbiome, 9 (1), 125. https://doi.org/10.1186/s40168-021-01062-510.1186/s40168-021-01062-5816613634053468
  5. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Meth., 13 (7), 581–583. https://doi.org/10.1038/nmeth.386910.1038/nmeth.3869492737727214047
  6. Daneberga, Z., Nakazawa-Miklasevica, M., Berga-Svitina, E., Murmane, D., Isarova, D., Cupane, L., Masinska, M., Nartisa, I., Lazdane, A., Miklasevics, E. (2021). Urinary organic acids spectra in children with altered gut microbiota composition and autistic spectrum disorder. Nordic J. Psychiatry, 76 (7), 523-529.
  7. Fouhy, F., Ross, R. P., Fitzgerald, G. F., Stanton, C., Cotter, P. D. (2012). Composition of the early intestinal microbiota. Gut Microbes, 3 (3), 203–220. https://doi.org/10.4161/gmic.2016910.4161/gmic.20169342721322572829
  8. Hill, C. J., Lynch, D. B., Murphy, K., Ulaszewska, M., Jeffery, I. B., O’Shea, C. A., Watkins, C., Dempsey, E., Mattivi, F., Tuohy, K., et al. (2017). Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome, 5 (1), 4. https://doi.org/10.1186/s40168-016-0213-y10.1186/s40168-016-0213-y524027428095889
  9. Homann, C.-M., Rossel, C. A. J., Dizzell, S., Bervoets, L., Simioni, J., Li, J., Gunn, E., Surette, M. G., de Souza, R. J., Mommers, M., Hutton, E. K., et al. (2021). Infants’ first solid foods: Impact on gut microbiota development in two intercontinental cohorts. Nutrients, 13 (8), 2639. https://doi.org/10.3390/nu1308263910.3390/nu13082639840033734444798
  10. Janda, J. M., Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol., 45 (9), 2761–2764. https://doi.org/10.1128/JCM.01228-0710.1128/JCM.01228-07204524217626177
  11. Katoh, K., Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol., 30 (4), 772–780. https://doi.org/10.1093/molbev/mst01010.1093/molbev/mst010360331823329690
  12. Kevin Blighe, A. L. (2021). PCAtools: Everything Principal Component Analysis. https://Github.Com/Kevinblighe/PCAtools (12.09.2022).
  13. Kroiča, J., Reinis, A., Kakar, M., Delorme, M., Broks, R., Asare, L., Berezovska, M., Jansins, V., Zviedre, A., Enģelis, A., Saxena, A., Pētersons, A. (2020). Culture based evaluation of microbiota in children with acute appendicitis. Proc. Latvian Acad. Sci., Section B, 74 (2), 100–105. https://doi.org/10.2478/prolas-2020-001610.2478/prolas-2020-0016
  14. Love, M. I., Huber, W., Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15 (12), 550. https://doi.org/10.1186/s13059-014-0550-810.1186/s13059-014-0550-8430204925516281
  15. McMurdie, P. J., Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8 (4), e61217. https://doi.org/10.1371/journal.pone.006121710.1371/journal.pone.0061217363253023630581
  16. Morais, J., Marques, C., Teixeira, D., Durão, C., Faria, A., Brito, S., Cardoso, M., Macedo, I., Pereira, E., Tomé, T., Calhau, C. (2020). Extremely preterm neonates have more Lactobacillus in meconium than very preterm neonates: The in utero microbial colonization hypothesis. Gut Microbes, 12 (1). https://doi.org/10.1080/19490976.2020.178580410.1080/19490976.2020.1785804752439432658601
  17. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. J. Machine Learning Res., 12, 2825–2830.
  18. Penders, J., Vink, C., Driessen, C., London, N., Thijs, C., Stobberingh, E. E. (2005). Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett., 243 (1), 141–147. https://doi.org/10.1016/j.femsle.2004.11.05210.1016/j.femsle.2004.11.05215668012
  19. Price, M. N., Dehal, P. S., Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 5 (3), e9490. https://doi.org/10.1371/journal.pone.000949010.1371/journal.pone.0009490283573620224823
  20. R Core Team (2020). A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed 14.09.2022).
  21. Ratsika, A., Codagnone, M. C., O’Mahony, S., Stanton, C., Cryan, J. F. (2021). Priming for life: Early life nutrition and the Microbiota-Gut-Brain Axis. Nutrients, 13 (2), 423. https://doi.org/10.3390/nu1302042310.3390/nu13020423791205833525617
  22. Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A., Mele, M. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7 (1), 14. https://doi.org/10.3390/microorganisms701001410.3390/microorganisms7010014635193830634578
  23. Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., Gasbarrini, A. (2017). Proteobacteria: A common factor in human diseases. BioMed Res. Int., 2017, 1–7. https://doi.org/10.1155/2017/935150710.1155/2017/9351507568835829230419
  24. Roger, L. C., Costabile, A., Holland, D. T., Hoyles, L., McCartney, A. L. (2010). Examination of faecal bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology, 156 (11), 3329–3341. https://doi.org/10.1099/mic.0.043224-010.1099/mic.0.043224-020864478
  25. Saturio, S., Nogacka, A. M., Alvarado-Jasso, G. M., Salazar, N., de los Reyes-Gavilán, C. G., Gueimonde, M., Arboleya, S. (2021). Role of bifidobacteria on infant health. Microorganisms, 9 (12), 2415. https://doi.org/10.3390/microorganisms912241510.3390/microorganisms9122415870844934946017
  26. Vester-Andersen, M. K., Mirsepasi-Lauridsen, H. C., Prosberg, M. V., Mortensen, C. O., Träger, C., Skovsen, K., Thorkilgaard, T., Nøjgaard, C., Vind, I., Krogfelt, K. A., Sørensen, N., Bendtsen, F., Petersen, A. M. (2019). Increased abundance of proteobacteria in aggressive Crohn’s disease seven years after diagnosis. Sci. Rep., 9 (1), 13473. https://doi.org/10.1038/s41598-019-49833-3.10.1038/s41598-019-49833-3674895331530835
DOI: https://doi.org/10.2478/prolas-2022-0101 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 657 - 664
Published on: Dec 10, 2022
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Egija Zelča, Dita Gudrā, Ērika Lūse, Jana Peterleviča, Maija Ustinova, Dāvids Fridmanis, Ingrīda Rumba-Rozenfelde, Ilva Daugule, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.