References
- Bansil, R., Turner, B. S. (2018). The biology of mucus: Composition, synthesis and organization. Adv. Drug Deliv. Rev., 124, 3–15.10.1016/j.addr.2017.09.02328970050
- Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., et al. (2020). Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 8, 103. https://doi.org/10.1186/s40168-020-00875-0.10.1186/s40168-020-00875-0732952332605663
- Bergmann, K. R., Lie, S. X. L., Tian, R., Kushnir, A., Turner, J. R., Li, H.-L., Chou, P. M., Weber, C. R., Plaen, I. G. (2013). Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing fnterocolitis. Amer. J. Pathol., 182 (5), 2013; https://dx.doi.org/10.1016/j.ajpath.2013.01.01310.1016/j.ajpath.2013.01.013364472523470164
- Binienda, A., Twardowska, A., Makaro, A., Salkaga, M. (2020). Dietary carbohydrates and lipids in the pathogenesis of leaky gut syndrome: An overview. Int. J. Mol. Sci., 21, 8368; DOI: 10.3390/ijms21218368.10.3390/ijms21218368766463833171587
- Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., Tilg, H., Watson, A., Wells, J. M. (2014). Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterology, 14, 189. http://www.biomedcentral.com/1471-230X/14/18910.1186/s12876-014-0189-7425399125407511
- Blackwood, B. P., Wood, D. R., Yuan, C. Y., Nicolas, J. D., Griffiths, A., Mestan, K., Hunter, C. J. (2015). Urinary claudin-2 measurements as a predictor of necrotizing enterocolitis: A pilot study. J. Neonatal Surg., 4 (4), 43.10.47338/jns.v4.457
- Campbell, J. A., Corrigall, A. V., Guy, A., Kirsch, R. E. (1991). Immunhistologic localisation of alpha, mu, and pi class gluthathione S-transferase in human tissues. Cancer (Phila), 61, 1608–1613.10.1002/1097-0142(19910315)67:6<1608::AID-CNCR2820670623>3.0.CO;2-S
- Cardoso-Silva, D., Delbue, D., Itzlinger, A., Moerkens, R., Withoff, S., Branchi, F., Schumann, M. (2019). Intestinal barrier function in gluten-related disorders. Nutrients, 11 (10), 2325. DOI: 10.3390/nu11102325.10.3390/nu11102325
- Chakaroun, R. M., Massier, L. Kovacs, P. (2020). Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: Perpetrators or bystanders? Nutrients, 12, 1082; DOI:10.3390/nu1204108210.3390/nu12041082
- Clarke, L. L. (2009). A guide to Ussing chamber studies of mouse intestine. Amer. J. Physiol. Gastrointest. Liver Physiol., 296, G1151–G1166.10.1152/ajpgi.90649.2008
- Crenn, P., Coudray-Lucas, C., Thuillier, F., Cynober, L., Messing, B. (2000). Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology, 119, 1496–1505.10.1053/gast.2000.2022711113071
- Crenn, P., Vahedi, K., Lavergne-Slove, A., Cynober, L., Matuchansky, C., Messing, B. (2003). Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology, 124, 1210–1219.10.1016/S0016-5085(03)00170-712730862
- Dastych, M., Dastych, M. Jr., Novotna, H., Cihalova, J. (2008). Lactulose/mannitol test and specificity, sensitivity, and area under curve of intestinal permeability parameters in patients with liver cirrhosis and Crohn’s disease. Dig. Dis. Sci., 53, 2789–2792. DOI: 10.1007/s10620-007-0184-8.10.1007/s10620-007-0184-818320320
- Davenport, E. R., Sanders, J. G., Song, S. J., Amato, K. R., Clark, A. G., Knight, R. (2017). The human microbiome in evolution. BMC Biology, 15, 127. DOI 10.1186/s12915-017-0454-7.10.1186/s12915-017-0454-7574439429282061
- DiTommaso, N., Gasbarrini, A., Ponziani, F. R. (2021). Intestinal barrier in human health and disease. Int. J. Environ. Res. Public Health, 18,12836. https://doi.org/10.3390/ijerph182312836.10.3390/ijerph182312836865720534886561
- Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., Blaser, M. J. (2019). Role of the microbiome in human development. Gut, 68, 1108–1114. DOI: 10.1136/gutjnl-2018-317503.10.1136/gutjnl-2018-317503658075530670574
- Farshchi, M. K., Azad, F. J., Salari, R., Mirsadraee, M., Anushiravani, M. (2017). A viewpoint on the leaky gut syndrome to treat allergic asthma: A novel opinion. J. Evidence-Based Complem. Altern. Med., 22 (3) 378–380.10.1177/2156587216682169587116630208732
- Fasano, A. (2020). All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases [version 1; peer review: 3 approved]. F1000Research, 9 (F1000 Faculty Rev), 69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996528/.
- Fasano, A. (2012a). Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol., 10 (10), 1096–1100. DOI: 10.1016/j.cgh.2012.08.012.10.1016/j.cgh.2012.08.012345851122902773
- Fasano, A. (2012b). Zonulin, regulation of tight junctions, and autoimmune diseases. Ann. N. Y. Acad. Sci., 1258 (1), 25–33. DOI: 10.1111/j.1749-6632.2012.06538.x.10.1111/j.1749-6632.2012.06538.x338470322731712
- Findley, M. K., Koval, M. (2009). Regulation and roles for claudin-family tight junction proteins. Life, 61 (4), 431–437. DOI: 10.1002/iub.175.10.1002/iub.175270811719319969
- Furuhashi, M., Hotamisligil, G. S. (2008). Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 7 (6), 489. DOI: 10.1038/nrd2589.10.1038/nrd2589282102718511927
- Garcia-Hernandez, V., Quiros, M., Nusrat, A. (2017). Intestinal epithelial claudins: Expression and regulation in homeostasis and inflammation. Ann. N. Y. Acad. Sci., 2017 1397 (1), 66–79. DOI: 10.1111/nyas.13360.10.1111/nyas.13360554580128493289
- Gearhart, S. L., Delaney, C. P., Senagore, A. J., Banbury, M. KJ., Remzi, F. H., Kiran, R. P., Fazio, V. W. (2003). Prospective assessment of the predictive value of alpha-glutathione S-transferase for intestinal ischemia. Amer. Surg., 69, 324–329.10.1177/000313480306900409
- Gerova, V. A., Stoynov, S. G., Katsarov, D. S., Svinarov, D. A. (2011). Increased intestinal permeability in inflammatory bowel diseases assessed by iohexol test. World J. Gastroenterol., 17 (17), 2211–2215.10.3748/wjg.v17.i17.2211
- Gerova, V. A., Svinarov, D. A., Nakov, R. V., Stoynov, S. G., Tankova, L. T., Nakov, V. N. (2020). Intestinal barrier dysfunction in liver cirrhosis assessed by iohexol test. Eur. Rev. Med. Pharm. Sci., 24, 315–322.
- Grootjans, J., Thuijls, G., Verdam, F., Derikx, J. P., Lenaerts, K., Buurman, W. A. (2010). Non-invasive assessment of barrier integrity and function of the human gut. World J. Gastrointest. Surg., 2 (3), 61–69.10.4240/wjgs.v2.i3.61299922121160852
- Griffiths, V., Al Assaf, N., Khan, R. (2021). Review of claudin proteins as potential biomarkers for necrotizing enterocolitis. Irish J. Med. Sci., 190 (4),1465–1472. https://doi.org/10.1007/s11845-020-02490-2.10.1007/s11845-020-02490-2852151433492576
- Halme, L., Turunen, U., Tuominen, J., Forsström, T., Turpeinen, U. (2000). Comparison of iohexol and lactulose-mannitol tests as markers of disease activity in patients with inflammatory bowel disease. Scand. J. Clin. Lab. Invest., 60, 695–702.10.1080/0036551005021642011218152
- Hansson, G. C. (2020). Mucins and the microbiome. Annu. Rev. Biochem., 89, 769–793. DOI:10.1146/annurev-biochem-011520-105053.10.1146/annurev-biochem-011520-105053844234132243763
- Herrmann, J. R., Turner, J. R. (2016). Beyond Ussing’s chambers: Contemporary thoughts on integration of transepithelial transport. Amer. J. Physiol. Cell Physiol., 310, C423–C431. DOI: 10.1152/ajpcell.00348.2015.10.1152/ajpcell.00348.2015479628626702131
- Hollander, D., Kaunitz, J. D. (2020). The “Leaky gut”: Tight junctions but loose associations? Dig. Dis. Sci., 65 (5), 1277–1287. DOI: 10.1007/s10620-019-05777-2.10.1007/s10620-019-05777-2719372331471860
- Horton, F., Wright, J., Smith, L., Hinton, P. J., Robertson, M. D. (2014). Increased intestinal permeability to oral chromium (51Cr) -EDTA in human Type 2 diabetes. Diabet. Med., 31, 559–563.10.1111/dme.1236024236770
- Human Microbiome Project. https://hmpdacc.org/ihmp/overview/ (accessed 20.02.2022).
- Jaworska, K., Konop, M., Bielinska, K., Hutsch, T., Dziekiewicz, M., Banaszkiewicz, A., Ufnal, M. (2019). Inflammatory bowel disease is associated with increased gut-to-blood penetration of short-chain fatty acids: A new, non-invasive marker of a functional intestinal lesion. Exper. Physiol.,104, 1226–1236.10.1113/EP08777331243807
- Johansson, M. E. V., Hansson, G. C. (2016). Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol., 16, 639–649. DOI: 10.1038/nri.2016.88.10.1038/nri.2016.88643529727498766
- Kessoku, T., Kobayashi, T., Tanaka, K., Yamamoto, A., Takahashi, K., Iwaki, M., Ozaki, A., Kasai, Y., Nogami, A., Honda, Y., et al. (2021). The role of leaky gut in nonalcoholic fatty liver disease: A novel therapeutic target. Int. J. Mol. Sci., 22, 8161. https://doi.org/10.3390/ijms22158161.10.3390/ijms22158161834747834360923
- Khoshbin, K., Khanna, L., Maselli, D., Atieh, J., Breen-Lyles, M., Arndt, K., Rhoten, D., Dyer, R. B., Singh, R. J., Nayar, S., et al. (2021). Development and validation of test for “leaky gut” small intestinal and colonic permeability using sugars in healthy adults. Gastroenterology, 161 (2), 463–475.e13. DOI: 10.1053/j.gastro.2021.04.020.10.1053/j.gastro.2021.04.020832888533865841
- Khurana, S., Corbally, M. T., Manning, F., Armenise, T., Kierce, B., Kilty, C. (2002). Glutathione S-transferase: A potential new marker of intestinal ischemia. J. Pediatr. Surg., 37 (11), 1543–1548.10.1053/jpsu.2002.3618112407536
- Kinashi, Y., Hase, K (2021). Partners in leaky gut syndrome: Intestinal dysbiosis and autoimmunity. Front. Immunol., 12, 673708. DOI: 10.3389/fimmu.2021.673708.10.3389/fimmu.2021.673708810030633968085
- Knezevic, J., Starchl, C., Berisha, A. T., Amrein, K. (2020). Thyroid-gut-axis: How does the microbiota influence thyroid function? Nutrient, 12, 1769. DOI: 10.3390/nu12061769.10.3390/nu12061769735320332545596
- Krug, S. M., Schulzke, J. D., Fromm, M. (2014). Tight junction, selective permeability, and related diseases. Semin. Cell Dev. Biol., 36, 166–176.10.1016/j.semcdb.2014.09.00225220018
- Larsen, R., Mertz-Nielsen, A., Hansen, M. B., Poulsen S. S., Bindslev, N. (2001). Novel modified Ussing chamber for the study of absorption and secretion in human endoscopic biopsies. Acta Physiol. Scand., 173 (2), 213–222.10.1046/j.1365-201X.2001.00865.x11683679
- Loret, S., Nollevaux, G., Remacle, R., Klimek, M., Barakat, I., Deloyer, P., Grandfilks, C., Dandrifosse, G. (2004). Analysis of PEG 400 and 4000 in urine for gut permeability assessment using solid phase extraction and gel permeation chromatography with refractometric detection. J. Chromatogr., 805 (2), 195–202.10.1016/j.jchromb.2004.02.03315135090
- Lutgens, L. C., Blijlevens, N. M., Deutz, N. E., Donnely, J. P., Lambin, P., de Pauw, B. E. (2005). Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentration: A comparison with sugar permeability tests. Cancer, 103,191–199.10.1002/cncr.2073315573372
- March, D. S. (2017). Intestinal fatty acid-binding protein and gut permeability responses to exercise. Eur. J. Appl. Physiol., 117, 931–941. DOI: 10.1007/s00421-017-3582-4.10.1007/s00421-017-3582-4538872028290057
- Marchesi, J. R., Ravel, J. (2015). The vocabulary of microbiome research: A proposal. Microbiome, 3, 31.10.1186/s40168-015-0094-5452006126229597
- Michielan, A., D’Incà, R. (2015). Intestinal permeability in inflammatory bowel disease: Pathogenesis, clinical evaluation, and therapy of leaky gut. Hindawi Publ. Corp. Med. Inflamm., 2015, 628157. http://dx.doi.org/10.1155/2015/628157.10.1155/2015/628157463710426582965
- Mohajeri, M. H., Brummer, R. J., Rastall, R. A., Weersma, R. K., Harmsen, H. J. M., Faas, M., Eggersdorfer, M. (2018). The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nut., 57 (Suppl 1), S1–S14. https://doi.org/10.1007/00394-018-1703-4.
- Oami, T., Coopersmith, C. M. (2021). Measurement of intestinal permeability during sepsis. Methods Mol. Biol., 2321, 169–175. DOI: 10.1007/978-1-0716-1488-4_15.10.1007/978-1-0716-1488-4_15830174334048016
- Obrenovich, M. E. M. (2018). Leaky gut, leaky brain? Microorganisms, 6, 107. DOI: 10.3390/microorganisms6040107.10.3390/microorganisms6040107631344530340384
- Paone, P., Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut, 69, 2232–2243. DOI: 10.1136/gutjnl-2020-322260.10.1136/gutjnl-2020-322260767748732917747
- Paray, B. A., Albeshr, M. F., Jan, A. T., Rather, I. A. (2020). Leaky gut and autoimmunity: An intricate balance in individuals health and the diseased state. Int. J. Mol. Sci., 21, 9770. DOI: 10.3390/ijms21249770.10.3390/ijms21249770776745333371435
- Pelaseyed, T., Hansson, G. C. (2020). Membrane mucins of the intestine at a glance. J. Cell Sci., 133, jcs240929. DOI: 10.1242/jcs.240929.10.1242/jcs.240929707504832169835
- Peled, Y., Watz, C., Gilat, T. (1985). Measurement of intestinal permeability using 51Cr-EDTA. Amer. J. Gastroenterol., 80, 770–773.
- Pietrzak, B., Tomela, K., Olejnik-Schmidt, A., Mackiewicz, A., Schmidt, M. (2020). Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int. J. Mol. Sci., 21, 9254. DOI: 10.3390/ijms21239254.10.3390/ijms21239254773143133291586
- Portincasa, P., Bonfrate, L., Khalil, M., de Angelis, M., Calabrese, F. M., D’Amato, M., Wang, D. Q. H., Di Ciaula, A. (2022). Intestinal barrier and permeability in health, obesity and NAFLD. Biomedicines, 10, 83. https://doi.org/10.3390/biomedicines10010083.10.3390/biomedicines10010083877301035052763
- Schoultz, I., Keita, A. V. (2020). The intestinal barrier and current techniques for the assessment of gut permeability. Cells, 9, 1909. DOI: 10.3390/cells9081909.10.3390/cells9081909746371732824536
- Schurink, M., Kooi, E. M. W., Hulzebos, C. V., Kox, R. G., Groen, H., Heineman, E., Bos, A. F., Hulscher, J. B. F. (2015). Intestinal fatty acid-binding protein as a diagnostic marker for complicated and uncomplicated necrotizing enterocolitis: A prospective cohort study. PLoS ONE, 10 (3), e0121336. DOI: 10.1371/journal.pone.0121336.10.1371/journal.pone.0121336436810025793701
- Sequeira, I. R., Lentle, R. G., Kruger, M. C., Hurst, R. D. (2014). Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability. PLoS ONE, 9 (6), e99256. DOI: 10.1371/journal.pone.0099256.10.1371/journal.pone.0099256404711024901524
- Shulman, R. J., Jarett, M. EW., Cain, K. C., Broussard, E. K., Heitkemper, M. M. (2014). Associations among gut permeability, inflammatory markers and symptoms in patients with irritable bowel syndrome. J. Gastroenterol., 49 (11), 1467–1476. DOI: 10.1007/s00535-013-0919-6.10.1007/s00535-013-0919-6410267424435814
- Sicard, J.-F., Le Bihan, G., Vogeleer, P., Jacques, M., Harel, J. (2017). Interactions of intestinal bacteria with components of the intestinal mucus. Front. Cell. Infect. Microbiol., 7, 387. DOI: 10.3389/fcimb.2017.00387.10.3389/fcimb.2017.00387559195228929087
- Smith, P. L. (1996). Methods for evaluating intestinal permeability and metabolism in vitro. Pharm. Biotechnol., 8, 13–34.10.1007/978-1-4899-1863-5_28791802
- Sturgeon, C., Fasano, A. (2016). Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers, 4 (4), e1251384. http://dx.doi.org/10.1080/21688370.2016.125138410.1080/21688370.2016.1251384521434728123927
- Sugimoto, M. (1995). Glutathione S-transferases (GSTs). Nihon Rinsho, 53 (5), 1253–1259. 7602788.
- Suzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J., 91, e13357. https://doi.org/10.1111/asj.13357.10.1111/asj.13357718724032219956
- Takiishi, T., Fenero, C. I. M., Câmara, N. O. S. (2017). Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers, 5 (4), e1373208. https://doi.org/10.1080/21688370.2017.1373208.10.1080/21688370.2017.1373208578842528956703
- Thomson, A., Smart, K., Somerville, M. S., Lauder, S. N., Appanna, G., Horwood, J., Raj, L. S., Sristava, B., Durai, D., Scurr, M. J., et al. (2019). The Ussing chamber system for measuring intestinal permeability in health and disease. BMC Gastroenterol., 19, 98.10.1186/s12876-019-1002-4658511131221083
- Thuijls, G., Derikx, J. P., de Haan, J. J., Grootajans, J., de Bruïne, A., Masclee, A. A. M., Heineman, E., Buurman, W. A. (2009). Urine-based detection of intestinal tight junction loss. J. Clin. Gastroenterol., 44 (1), e14–e19. DOI: 10.1097/MCG.0b013e31819f5652.10.1097/MCG.0b013e31819f565219525861
- Turpin, W., Lee, S. H., Raygoza Garay, J. A., Madsen, K. L., Meddings, J. B., Bedrani, L., Power, N., Espin-Garcia, O., Xu, W., Smith, M. I., et al. (2020). Increased intestinal permeability is associated with later development of Crohn’s disease. Gastroenterology, 159, 2092–2100.e2095.10.1053/j.gastro.2020.08.00532791132
- Vancamelbeke, M., Vermeire, S. (2017). The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol., 11 (9), 821–834. DOI: 10.1080/17474124.2017.1343143.10.1080/17474124.2017.1343143610480428650209
- Vuong, C. N., Mukllenix, G. J., Kidd, M. T., Bottje, W. G., Hargis, B. M., Tellez-Isaias, G. (2021). Research note: Modified serum fluorescein isothiocyanate dextran (FITC-d) assay procedure to determine intestinal permeability in poultry fed diets high in natural or synthetic pigments. Poultry Sci., 100, 101138.10.1016/j.psj.2021.101138813173733975047
- Watson, C. J., Rowland, M., Warhurst, G. (2001). Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Amer. J. Physiol. Cell Physiol., 281, C388–C397.10.1152/ajpcell.2001.281.2.C38811443038
- Woting, A., Blaut, M. (2018). Small intestinal permeability and gut-transit time determined with low and high molecular weight fluorescein isothiocyanate-dextrans in C3H mice. Nutrients, 10, 685. DOI: 10.3390w/nu10060685.
- Wuyts, B., Riwthorst, D., Brouwers, J., Tack, J., Annaert, P., Augustijns, P. (2015). Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability. Int. J. Pharmaceut., 478, 736–744.10.1016/j.ijpharm.2014.12.02125510602
- Zheng, D. Liao, H., Chen, S., Liu, X., Mao, C., Zhang, C., Meng, M., Wang, Zhi, Wang, Y., Jianget, Q., et al. (2021). Elevated levels of circulating biomarkers related to leaky gut syndrome and bacterial translocation are associated with Graves’ disease. Front. Endocrinol., 12, 796212. DOI: 10.3389/fendo.2021.796212.10.3389/fendo.2021.796212871683134975767