Have a personal or library account? Click to login
Establishing the cut-offs of leaky gut syndrome diagnostic: where are we now? Cover
Open Access
|Dec 2022

References

  1. Bansil, R., Turner, B. S. (2018). The biology of mucus: Composition, synthesis and organization. Adv. Drug Deliv. Rev., 124, 3–15.10.1016/j.addr.2017.09.02328970050
  2. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., et al. (2020). Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 8, 103. https://doi.org/10.1186/s40168-020-00875-0.10.1186/s40168-020-00875-0732952332605663
  3. Bergmann, K. R., Lie, S. X. L., Tian, R., Kushnir, A., Turner, J. R., Li, H.-L., Chou, P. M., Weber, C. R., Plaen, I. G. (2013). Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing fnterocolitis. Amer. J. Pathol., 182 (5), 2013; https://dx.doi.org/10.1016/j.ajpath.2013.01.01310.1016/j.ajpath.2013.01.013364472523470164
  4. Binienda, A., Twardowska, A., Makaro, A., Salkaga, M. (2020). Dietary carbohydrates and lipids in the pathogenesis of leaky gut syndrome: An overview. Int. J. Mol. Sci., 21, 8368; DOI: 10.3390/ijms21218368.10.3390/ijms21218368766463833171587
  5. Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., Tilg, H., Watson, A., Wells, J. M. (2014). Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterology, 14, 189. http://www.biomedcentral.com/1471-230X/14/18910.1186/s12876-014-0189-7425399125407511
  6. Blackwood, B. P., Wood, D. R., Yuan, C. Y., Nicolas, J. D., Griffiths, A., Mestan, K., Hunter, C. J. (2015). Urinary claudin-2 measurements as a predictor of necrotizing enterocolitis: A pilot study. J. Neonatal Surg., 4 (4), 43.10.47338/jns.v4.457
  7. Campbell, J. A., Corrigall, A. V., Guy, A., Kirsch, R. E. (1991). Immunhistologic localisation of alpha, mu, and pi class gluthathione S-transferase in human tissues. Cancer (Phila), 61, 1608–1613.10.1002/1097-0142(19910315)67:6<1608::AID-CNCR2820670623>3.0.CO;2-S
  8. Cardoso-Silva, D., Delbue, D., Itzlinger, A., Moerkens, R., Withoff, S., Branchi, F., Schumann, M. (2019). Intestinal barrier function in gluten-related disorders. Nutrients, 11 (10), 2325. DOI: 10.3390/nu11102325.10.3390/nu11102325
  9. Chakaroun, R. M., Massier, L. Kovacs, P. (2020). Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: Perpetrators or bystanders? Nutrients, 12, 1082; DOI:10.3390/nu1204108210.3390/nu12041082
  10. Clarke, L. L. (2009). A guide to Ussing chamber studies of mouse intestine. Amer. J. Physiol. Gastrointest. Liver Physiol., 296, G1151–G1166.10.1152/ajpgi.90649.2008
  11. Crenn, P., Coudray-Lucas, C., Thuillier, F., Cynober, L., Messing, B. (2000). Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology, 119, 1496–1505.10.1053/gast.2000.2022711113071
  12. Crenn, P., Vahedi, K., Lavergne-Slove, A., Cynober, L., Matuchansky, C., Messing, B. (2003). Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology, 124, 1210–1219.10.1016/S0016-5085(03)00170-712730862
  13. Dastych, M., Dastych, M. Jr., Novotna, H., Cihalova, J. (2008). Lactulose/mannitol test and specificity, sensitivity, and area under curve of intestinal permeability parameters in patients with liver cirrhosis and Crohn’s disease. Dig. Dis. Sci., 53, 2789–2792. DOI: 10.1007/s10620-007-0184-8.10.1007/s10620-007-0184-818320320
  14. Davenport, E. R., Sanders, J. G., Song, S. J., Amato, K. R., Clark, A. G., Knight, R. (2017). The human microbiome in evolution. BMC Biology, 15, 127. DOI 10.1186/s12915-017-0454-7.10.1186/s12915-017-0454-7574439429282061
  15. DiTommaso, N., Gasbarrini, A., Ponziani, F. R. (2021). Intestinal barrier in human health and disease. Int. J. Environ. Res. Public Health, 18,12836. https://doi.org/10.3390/ijerph182312836.10.3390/ijerph182312836865720534886561
  16. Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., Blaser, M. J. (2019). Role of the microbiome in human development. Gut, 68, 1108–1114. DOI: 10.1136/gutjnl-2018-317503.10.1136/gutjnl-2018-317503658075530670574
  17. Farshchi, M. K., Azad, F. J., Salari, R., Mirsadraee, M., Anushiravani, M. (2017). A viewpoint on the leaky gut syndrome to treat allergic asthma: A novel opinion. J. Evidence-Based Complem. Altern. Med., 22 (3) 378–380.10.1177/2156587216682169587116630208732
  18. Fasano, A. (2020). All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases [version 1; peer review: 3 approved]. F1000Research, 9 (F1000 Faculty Rev), 69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996528/.
  19. Fasano, A. (2012a). Intestinal permeability and its regulation by zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol., 10 (10), 1096–1100. DOI: 10.1016/j.cgh.2012.08.012.10.1016/j.cgh.2012.08.012345851122902773
  20. Fasano, A. (2012b). Zonulin, regulation of tight junctions, and autoimmune diseases. Ann. N. Y. Acad. Sci., 1258 (1), 25–33. DOI: 10.1111/j.1749-6632.2012.06538.x.10.1111/j.1749-6632.2012.06538.x338470322731712
  21. Findley, M. K., Koval, M. (2009). Regulation and roles for claudin-family tight junction proteins. Life, 61 (4), 431–437. DOI: 10.1002/iub.175.10.1002/iub.175270811719319969
  22. Furuhashi, M., Hotamisligil, G. S. (2008). Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 7 (6), 489. DOI: 10.1038/nrd2589.10.1038/nrd2589282102718511927
  23. Garcia-Hernandez, V., Quiros, M., Nusrat, A. (2017). Intestinal epithelial claudins: Expression and regulation in homeostasis and inflammation. Ann. N. Y. Acad. Sci., 2017 1397 (1), 66–79. DOI: 10.1111/nyas.13360.10.1111/nyas.13360554580128493289
  24. Gearhart, S. L., Delaney, C. P., Senagore, A. J., Banbury, M. KJ., Remzi, F. H., Kiran, R. P., Fazio, V. W. (2003). Prospective assessment of the predictive value of alpha-glutathione S-transferase for intestinal ischemia. Amer. Surg., 69, 324–329.10.1177/000313480306900409
  25. Gerova, V. A., Stoynov, S. G., Katsarov, D. S., Svinarov, D. A. (2011). Increased intestinal permeability in inflammatory bowel diseases assessed by iohexol test. World J. Gastroenterol., 17 (17), 2211–2215.10.3748/wjg.v17.i17.2211
  26. Gerova, V. A., Svinarov, D. A., Nakov, R. V., Stoynov, S. G., Tankova, L. T., Nakov, V. N. (2020). Intestinal barrier dysfunction in liver cirrhosis assessed by iohexol test. Eur. Rev. Med. Pharm. Sci., 24, 315–322.
  27. Grootjans, J., Thuijls, G., Verdam, F., Derikx, J. P., Lenaerts, K., Buurman, W. A. (2010). Non-invasive assessment of barrier integrity and function of the human gut. World J. Gastrointest. Surg., 2 (3), 61–69.10.4240/wjgs.v2.i3.61299922121160852
  28. Griffiths, V., Al Assaf, N., Khan, R. (2021). Review of claudin proteins as potential biomarkers for necrotizing enterocolitis. Irish J. Med. Sci., 190 (4),1465–1472. https://doi.org/10.1007/s11845-020-02490-2.10.1007/s11845-020-02490-2852151433492576
  29. Halme, L., Turunen, U., Tuominen, J., Forsström, T., Turpeinen, U. (2000). Comparison of iohexol and lactulose-mannitol tests as markers of disease activity in patients with inflammatory bowel disease. Scand. J. Clin. Lab. Invest., 60, 695–702.10.1080/0036551005021642011218152
  30. Hansson, G. C. (2020). Mucins and the microbiome. Annu. Rev. Biochem., 89, 769–793. DOI:10.1146/annurev-biochem-011520-105053.10.1146/annurev-biochem-011520-105053844234132243763
  31. Herrmann, J. R., Turner, J. R. (2016). Beyond Ussing’s chambers: Contemporary thoughts on integration of transepithelial transport. Amer. J. Physiol. Cell Physiol., 310, C423–C431. DOI: 10.1152/ajpcell.00348.2015.10.1152/ajpcell.00348.2015479628626702131
  32. Hollander, D., Kaunitz, J. D. (2020). The “Leaky gut”: Tight junctions but loose associations? Dig. Dis. Sci., 65 (5), 1277–1287. DOI: 10.1007/s10620-019-05777-2.10.1007/s10620-019-05777-2719372331471860
  33. Horton, F., Wright, J., Smith, L., Hinton, P. J., Robertson, M. D. (2014). Increased intestinal permeability to oral chromium (51Cr) -EDTA in human Type 2 diabetes. Diabet. Med., 31, 559–563.10.1111/dme.1236024236770
  34. Human Microbiome Project. https://hmpdacc.org/ihmp/overview/ (accessed 20.02.2022).
  35. Jaworska, K., Konop, M., Bielinska, K., Hutsch, T., Dziekiewicz, M., Banaszkiewicz, A., Ufnal, M. (2019). Inflammatory bowel disease is associated with increased gut-to-blood penetration of short-chain fatty acids: A new, non-invasive marker of a functional intestinal lesion. Exper. Physiol.,104, 1226–1236.10.1113/EP08777331243807
  36. Johansson, M. E. V., Hansson, G. C. (2016). Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol., 16, 639–649. DOI: 10.1038/nri.2016.88.10.1038/nri.2016.88643529727498766
  37. Kessoku, T., Kobayashi, T., Tanaka, K., Yamamoto, A., Takahashi, K., Iwaki, M., Ozaki, A., Kasai, Y., Nogami, A., Honda, Y., et al. (2021). The role of leaky gut in nonalcoholic fatty liver disease: A novel therapeutic target. Int. J. Mol. Sci., 22, 8161. https://doi.org/10.3390/ijms22158161.10.3390/ijms22158161834747834360923
  38. Khoshbin, K., Khanna, L., Maselli, D., Atieh, J., Breen-Lyles, M., Arndt, K., Rhoten, D., Dyer, R. B., Singh, R. J., Nayar, S., et al. (2021). Development and validation of test for “leaky gut” small intestinal and colonic permeability using sugars in healthy adults. Gastroenterology, 161 (2), 463–475.e13. DOI: 10.1053/j.gastro.2021.04.020.10.1053/j.gastro.2021.04.020832888533865841
  39. Khurana, S., Corbally, M. T., Manning, F., Armenise, T., Kierce, B., Kilty, C. (2002). Glutathione S-transferase: A potential new marker of intestinal ischemia. J. Pediatr. Surg., 37 (11), 1543–1548.10.1053/jpsu.2002.3618112407536
  40. Kinashi, Y., Hase, K (2021). Partners in leaky gut syndrome: Intestinal dysbiosis and autoimmunity. Front. Immunol., 12, 673708. DOI: 10.3389/fimmu.2021.673708.10.3389/fimmu.2021.673708810030633968085
  41. Knezevic, J., Starchl, C., Berisha, A. T., Amrein, K. (2020). Thyroid-gut-axis: How does the microbiota influence thyroid function? Nutrient, 12, 1769. DOI: 10.3390/nu12061769.10.3390/nu12061769735320332545596
  42. Krug, S. M., Schulzke, J. D., Fromm, M. (2014). Tight junction, selective permeability, and related diseases. Semin. Cell Dev. Biol., 36, 166–176.10.1016/j.semcdb.2014.09.00225220018
  43. Larsen, R., Mertz-Nielsen, A., Hansen, M. B., Poulsen S. S., Bindslev, N. (2001). Novel modified Ussing chamber for the study of absorption and secretion in human endoscopic biopsies. Acta Physiol. Scand., 173 (2), 213–222.10.1046/j.1365-201X.2001.00865.x11683679
  44. Loret, S., Nollevaux, G., Remacle, R., Klimek, M., Barakat, I., Deloyer, P., Grandfilks, C., Dandrifosse, G. (2004). Analysis of PEG 400 and 4000 in urine for gut permeability assessment using solid phase extraction and gel permeation chromatography with refractometric detection. J. Chromatogr., 805 (2), 195–202.10.1016/j.jchromb.2004.02.03315135090
  45. Lutgens, L. C., Blijlevens, N. M., Deutz, N. E., Donnely, J. P., Lambin, P., de Pauw, B. E. (2005). Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentration: A comparison with sugar permeability tests. Cancer, 103,191–199.10.1002/cncr.2073315573372
  46. March, D. S. (2017). Intestinal fatty acid-binding protein and gut permeability responses to exercise. Eur. J. Appl. Physiol., 117, 931–941. DOI: 10.1007/s00421-017-3582-4.10.1007/s00421-017-3582-4538872028290057
  47. Marchesi, J. R., Ravel, J. (2015). The vocabulary of microbiome research: A proposal. Microbiome, 3, 31.10.1186/s40168-015-0094-5452006126229597
  48. Michielan, A., D’Incà, R. (2015). Intestinal permeability in inflammatory bowel disease: Pathogenesis, clinical evaluation, and therapy of leaky gut. Hindawi Publ. Corp. Med. Inflamm., 2015, 628157. http://dx.doi.org/10.1155/2015/628157.10.1155/2015/628157463710426582965
  49. Mohajeri, M. H., Brummer, R. J., Rastall, R. A., Weersma, R. K., Harmsen, H. J. M., Faas, M., Eggersdorfer, M. (2018). The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nut., 57 (Suppl 1), S1–S14. https://doi.org/10.1007/00394-018-1703-4.
  50. Oami, T., Coopersmith, C. M. (2021). Measurement of intestinal permeability during sepsis. Methods Mol. Biol., 2321, 169–175. DOI: 10.1007/978-1-0716-1488-4_15.10.1007/978-1-0716-1488-4_15830174334048016
  51. Obrenovich, M. E. M. (2018). Leaky gut, leaky brain? Microorganisms, 6, 107. DOI: 10.3390/microorganisms6040107.10.3390/microorganisms6040107631344530340384
  52. Paone, P., Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut, 69, 2232–2243. DOI: 10.1136/gutjnl-2020-322260.10.1136/gutjnl-2020-322260767748732917747
  53. Paray, B. A., Albeshr, M. F., Jan, A. T., Rather, I. A. (2020). Leaky gut and autoimmunity: An intricate balance in individuals health and the diseased state. Int. J. Mol. Sci., 21, 9770. DOI: 10.3390/ijms21249770.10.3390/ijms21249770776745333371435
  54. Pelaseyed, T., Hansson, G. C. (2020). Membrane mucins of the intestine at a glance. J. Cell Sci., 133, jcs240929. DOI: 10.1242/jcs.240929.10.1242/jcs.240929707504832169835
  55. Peled, Y., Watz, C., Gilat, T. (1985). Measurement of intestinal permeability using 51Cr-EDTA. Amer. J. Gastroenterol., 80, 770–773.
  56. Pietrzak, B., Tomela, K., Olejnik-Schmidt, A., Mackiewicz, A., Schmidt, M. (2020). Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int. J. Mol. Sci., 21, 9254. DOI: 10.3390/ijms21239254.10.3390/ijms21239254773143133291586
  57. Portincasa, P., Bonfrate, L., Khalil, M., de Angelis, M., Calabrese, F. M., D’Amato, M., Wang, D. Q. H., Di Ciaula, A. (2022). Intestinal barrier and permeability in health, obesity and NAFLD. Biomedicines, 10, 83. https://doi.org/10.3390/biomedicines10010083.10.3390/biomedicines10010083877301035052763
  58. Schoultz, I., Keita, A. V. (2020). The intestinal barrier and current techniques for the assessment of gut permeability. Cells, 9, 1909. DOI: 10.3390/cells9081909.10.3390/cells9081909746371732824536
  59. Schurink, M., Kooi, E. M. W., Hulzebos, C. V., Kox, R. G., Groen, H., Heineman, E., Bos, A. F., Hulscher, J. B. F. (2015). Intestinal fatty acid-binding protein as a diagnostic marker for complicated and uncomplicated necrotizing enterocolitis: A prospective cohort study. PLoS ONE, 10 (3), e0121336. DOI: 10.1371/journal.pone.0121336.10.1371/journal.pone.0121336436810025793701
  60. Sequeira, I. R., Lentle, R. G., Kruger, M. C., Hurst, R. D. (2014). Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability. PLoS ONE, 9 (6), e99256. DOI: 10.1371/journal.pone.0099256.10.1371/journal.pone.0099256404711024901524
  61. Shulman, R. J., Jarett, M. EW., Cain, K. C., Broussard, E. K., Heitkemper, M. M. (2014). Associations among gut permeability, inflammatory markers and symptoms in patients with irritable bowel syndrome. J. Gastroenterol., 49 (11), 1467–1476. DOI: 10.1007/s00535-013-0919-6.10.1007/s00535-013-0919-6410267424435814
  62. Sicard, J.-F., Le Bihan, G., Vogeleer, P., Jacques, M., Harel, J. (2017). Interactions of intestinal bacteria with components of the intestinal mucus. Front. Cell. Infect. Microbiol., 7, 387. DOI: 10.3389/fcimb.2017.00387.10.3389/fcimb.2017.00387559195228929087
  63. Smith, P. L. (1996). Methods for evaluating intestinal permeability and metabolism in vitro. Pharm. Biotechnol., 8, 13–34.10.1007/978-1-4899-1863-5_28791802
  64. Sturgeon, C., Fasano, A. (2016). Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers, 4 (4), e1251384. http://dx.doi.org/10.1080/21688370.2016.125138410.1080/21688370.2016.1251384521434728123927
  65. Sugimoto, M. (1995). Glutathione S-transferases (GSTs). Nihon Rinsho, 53 (5), 1253–1259. 7602788.
  66. Suzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J., 91, e13357. https://doi.org/10.1111/asj.13357.10.1111/asj.13357718724032219956
  67. Takiishi, T., Fenero, C. I. M., Câmara, N. O. S. (2017). Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers, 5 (4), e1373208. https://doi.org/10.1080/21688370.2017.1373208.10.1080/21688370.2017.1373208578842528956703
  68. Thomson, A., Smart, K., Somerville, M. S., Lauder, S. N., Appanna, G., Horwood, J., Raj, L. S., Sristava, B., Durai, D., Scurr, M. J., et al. (2019). The Ussing chamber system for measuring intestinal permeability in health and disease. BMC Gastroenterol., 19, 98.10.1186/s12876-019-1002-4658511131221083
  69. Thuijls, G., Derikx, J. P., de Haan, J. J., Grootajans, J., de Bruïne, A., Masclee, A. A. M., Heineman, E., Buurman, W. A. (2009). Urine-based detection of intestinal tight junction loss. J. Clin. Gastroenterol., 44 (1), e14–e19. DOI: 10.1097/MCG.0b013e31819f5652.10.1097/MCG.0b013e31819f565219525861
  70. Turpin, W., Lee, S. H., Raygoza Garay, J. A., Madsen, K. L., Meddings, J. B., Bedrani, L., Power, N., Espin-Garcia, O., Xu, W., Smith, M. I., et al. (2020). Increased intestinal permeability is associated with later development of Crohn’s disease. Gastroenterology, 159, 2092–2100.e2095.10.1053/j.gastro.2020.08.00532791132
  71. Vancamelbeke, M., Vermeire, S. (2017). The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol., 11 (9), 821–834. DOI: 10.1080/17474124.2017.1343143.10.1080/17474124.2017.1343143610480428650209
  72. Vuong, C. N., Mukllenix, G. J., Kidd, M. T., Bottje, W. G., Hargis, B. M., Tellez-Isaias, G. (2021). Research note: Modified serum fluorescein isothiocyanate dextran (FITC-d) assay procedure to determine intestinal permeability in poultry fed diets high in natural or synthetic pigments. Poultry Sci., 100, 101138.10.1016/j.psj.2021.101138813173733975047
  73. Watson, C. J., Rowland, M., Warhurst, G. (2001). Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Amer. J. Physiol. Cell Physiol., 281, C388–C397.10.1152/ajpcell.2001.281.2.C38811443038
  74. Woting, A., Blaut, M. (2018). Small intestinal permeability and gut-transit time determined with low and high molecular weight fluorescein isothiocyanate-dextrans in C3H mice. Nutrients, 10, 685. DOI: 10.3390w/nu10060685.
  75. Wuyts, B., Riwthorst, D., Brouwers, J., Tack, J., Annaert, P., Augustijns, P. (2015). Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability. Int. J. Pharmaceut., 478, 736–744.10.1016/j.ijpharm.2014.12.02125510602
  76. Zheng, D. Liao, H., Chen, S., Liu, X., Mao, C., Zhang, C., Meng, M., Wang, Zhi, Wang, Y., Jianget, Q., et al. (2021). Elevated levels of circulating biomarkers related to leaky gut syndrome and bacterial translocation are associated with Graves’ disease. Front. Endocrinol., 12, 796212. DOI: 10.3389/fendo.2021.796212.10.3389/fendo.2021.796212871683134975767
DOI: https://doi.org/10.2478/prolas-2022-0089 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 569 - 577
Published on: Dec 10, 2022
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Jekaterina Rodina, Aleksejs Derovs, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.