Have a personal or library account? Click to login
Mixing Hydrogel Granules into Peat Substrate Improves Germination and Enhances Growth and Physiological Performance of Tomato Seedlings Cover

Mixing Hydrogel Granules into Peat Substrate Improves Germination and Enhances Growth and Physiological Performance of Tomato Seedlings

Open Access
|Oct 2022

References

  1. Abdallah, A. M. (2019). The effect of hydrogel particle size on water retention properties and availability under water stress. Int. Soil Water Conserv. Res., 7, 275–285. https://doi.org/10.1016/j.iswcr.2019.05.001.
  2. Akhter, J., Mahmood, K., Malik, K. A., Mardan, A., Ahmad, M., Iqbal, M. M. (2004). Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Environ., 50, 463–469. https://doi.org/10.17221/4059-pse.
  3. Babaj, I., Sallaku, G., Balliu, A. (2014). The effects of endogenous mycorrhiza (Glomus spp.) on plant growth and yield of grafted cucumber (Cucumis sativum L.) under common commercial greenhouse conditions. Albanian J. Agric. Sci., 13 (2), 24–28.
  4. Balliu, A., Bani, A., Sulēe, S. (2007a). Nitrogen effects in the relative growth rate and its components of pepper (Capsicum annuum) and eggplant (Solanum melongena) seedlings. Acta Hortic., 747, 257–262.10.17660/ActaHortic.2007.747.30
  5. Balliu, A, Sallaku, G., Kuci, S., Cota, E., Kaciu, S. (2007b). The effect of major nutrients (NPK) on the growth rate of pepper and eggplant seedlings. Acta Hortic., 729, 341–346.10.17660/ActaHortic.2007.729.56
  6. Balliu, A., Sallaku, G. (2017). Exogenous auxin improves root morphology and restores growth of grafted cucumber seedlings. Hortic. Sci., 44, 82–90. https://doi.org/10.17221/53/2016-HORTSCI.
  7. Balliu, A, Maršić, N. K., Gruda, N. (2017a). Seedling production. In: Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries: Principles for sustainable intensification of smallholder farms. Plant Production and Protection Paper 230, Rome, pp. 189–206.10.18690/978-961-286-045-5.34
  8. Balliu, A., Sallaku, G., Nasto, T. (2017b). Nursery management practices influence the quality of vegetable seedlings. Italus Hortus, 24, 39–52. https://doi.org/10.26353/j.itahort/2017.3.3952.
  9. Balliu, A., Vuksani, G., Nasto, T., Haxhinasto, L., Kaēiu, S. (2008). Grafting effects on tomato growth rate, yield and fruit quality under saline irrigation water. Acta Hortic., 801, 1161–1166.10.17660/ActaHortic.2008.801.141
  10. Baran, A., Zaleski, T., Kulikowski, E., Wieczorek, J. (2015). Hydrophysical and biological properties of sandy substrata enriched with hydrogel. Polish J. Environ. Stud., 24, 2355–2362. https://doi.org/10.15244/pjoes/59258.
  11. Fascella, G. (2015). Growing substrates alternative to peat for ornamental plants. In: Asaduzzaman, Md. (Ed.). Soilless Culture: Use of Substrates for the Production of Quality Horticultural Crops. https://doi.org/10.5772/59596.
  12. Cannazza, G., Cataldo, A., Benedetto, E. De, Demitri, C., Madaghiele, M., Sannino, A. (2014). Experimental assessment of the use of a novel superabsorbent polymer (SAP) for the optimization of water consumption in agricultural irrigation process. Water, 6, 2056–2069. DOI: 10.3390/w6072056.10.3390/w6072056
  13. Damalas, C. A., Koutroubas, S. D., Fotiadis, S. (2019). Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture, 9 (9), 201. https://doi.org/10.3390/agriculture9090201.
  14. Díaz-pérez, M., Cara, M. De, Camacho, F. (2011). Effect of dose and kind of compost on the quality of seedlings of watermelon grafted onto pumpkin in industrial seedbed. Acta Hortic., 898, 271–278. https://doi.org/10.17660/ActaHortic.2011.898.33.
  15. Driesen, E., Van den Ende, W., De Proft, M., Saeys, W. (2020). Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy, 10, 1975. https://doi.org/10.3390/agronomy10121975.
  16. Elshafie, H. S., Camele, I. (2021). Applications of absorbent polymers for sustainable plant protection and crop yield. Sustainability, 13 (6), 3253. https://doi.org/10.3390/su13063253.
  17. Elshafie, H. S., Nuzzaci, M., Logozzo, G., Gioia, T., Camele, I. (2020). Biological investigations on the role of hydrogel formulations containing bioactive natural agents against some common phytopathogens of Phaseolus vulgaris L. and seed germination. J. Biol. Res., 93, 114–122. https://doi.org/10.4081/jbr.2020.9219.
  18. Gago, J., Daloso, D. de M., Figueroa, C. M., Flexas, J., Fernie, A. R., Nikoloski, Z. (2016). Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach. Plant Physiol., 171, 265–279. https://doi.org/10.1104/pp.15.01660.485467526977088
  19. Lu, Z., Percy, R. G., Qualset, C. O., Zeiger, E. (1998). Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J. Exp. Bot., 49, 453–460. https://doi.org/10.1093/jxb/49.special_issue.453.
  20. Maluin, F. N., Hussein, M. Z., Nik Ibrahim, N. N. L., Wayayok, A., Hashim, N. (2021). Some emerging opportunities of nanotechnology development for soilless and microgreen farming. Agronomy, 11, 1213. https://doi.org/10.3390/agronomy11061213.
  21. Melo, R. A. C., Jorge, M. H. A., Bortolin, A., Boiteux, L. S., Ribeiro, C., Marconcini, J. M. (2019). Growth of tomato seedlings in substrates containing a nanocomposite hydrogel with calcium montmorillonite (NC-MMT). Hortic. Bras., 37, 199–203. https://doi.org/10.1590/s0102-053620190210.
  22. Montesano, F. F., Parente, A., Santamaria, P., Sannino, A., Serio, F. (2015). Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric. Agric. Sci. Procedia, 4, 451–458. https://doi.org/10.1016/j.aaspro.2015.03.052.
  23. Niinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res., 25, 693–714. https://doi.org/10.1007/s11284-010-0712-4.
  24. Paudel, V. R., Gupta, V. N. P. (2008). Efects of some essential oils on seed germination and seedling length of Parthenium hysterophorous L. Ecoprint, 15, 69–73.10.3126/eco.v15i0.1945
  25. Ranal, M. A., De Santana, D. G. (2006). How and why to measure the germination process? Rev. Bras. Bot., 29, 1–11. https://doi.org/10.1590/S0100-84042006000100002.
  26. Sallaku, G., Sandén, H., Babaj, I., Kaciu, S., Balliu, A., Rewald, B. (2019). Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Sci. Hortic. (Amsterdam), 243, 177–188. https://doi.org/10.1016/j.scienta.2018.08.027.
  27. Sallaku, G., Vuksani, G., Balliu, A. (2020). Seed germination and initial growth of pepper seedlings is influenced by environment temperature and priming method. J. Agric. Stud., 8, 540. https://doi.org/10.5296/jas.v8i4.17831.
  28. Sasmal, P. K., Patra, S. (2020). Effect in growth of corn plant from cellulose-based hydrogel derived from wheat straw. J. Inst. Eng. Ser., E, 103, 41–46. https://doi.org/10.1007/s40034-020-00180-3.
  29. Stegmann, R., Lotter, S., King, L., Hopping, W. (1993). Fate of an absorbent gelling material for hygiene paper products in landfill and composting. Waste Manag. Res., 11, 155–170.10.1177/0734242X9301100207
  30. Stylosanthes, H. B. K., Chaves, I. D. S., Cesar, N., Silva, Q., Ribeiro, D. M., Stylosanthes, H. B. K. (2017). Effect of the seed coat on dormancy and germination in in Stylosanthes humilis H. B. K. seeds. J. Seed Sci., 39 (2), 114–122. http://dx.doi.org/10.1590/2317-1545v39n2167773.10.1590/2317-1545v39n2167773
  31. Szczerba, A., Płażek, A., Pastuszak, J., Kopeć, P., Hornyák, M., Dubert, F. (2021). Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agronomy, 11. (4), 800. https://doi.org/10.3390/AGRONOMY11040800.
  32. Tang, H., Zhang, L., Hu, L., Zhang, L. (2014). Application of chitin hydrogels for seed germination, seedling growth of rapeseed. J. Plant Growth Regul., 33,195–201. https://doi.org/10.1007/s00344-013-9361-5.
  33. Veselaj, E. (2018). Tripartite relationships in legume crops are plant-micro-organism-specific and strongly influenced by salinity. Agriculture, 8, 117. https://doi.org/10.3390/agriculture8080117.
  34. Wallace, A., Wallace, G. A. (1986). Effects of polymeric soil conditioners on emergence of tomato seedlings. Soil Sci., 141, 321–323.10.1097/00010694-198605000-00004
  35. Woodhouse, J. M., Johnson, M. S., Biology, E., Box, P. O. (1991). The effect of gel-forming polymers on seed germination and establishment. J. Arid Environ., 20, 375–380. https://doi.org/10.1016/S0140-1963(18)30698-0.
  36. Xu, Z., Jiang, Y., Jia, B., Zhou, G. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Front. Plant Sci., 7, 1–15. https://doi.org/10.3389/fpls.2016.00657.486567227242858
  37. Xu, H., Yeum, K., Yoon, Y., Ju, J. (2019). Effect of hydrogels in three substrates on growth and ornamental quality of apple mint (Mentha suaveolens) in unirrigated green roofs. J. Hortic., 6 (3), https://doi.org/10.35248/2376-0354.19.06.260.
DOI: https://doi.org/10.2478/prolas-2022-0083 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 536 - 542
Submitted on: Aug 24, 2021
Accepted on: Jul 30, 2022
Published on: Oct 14, 2022
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Astrit Balliu, Erjald Haxhiu, Glenda Sallaku, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.