Have a personal or library account? Click to login
Evaluation of Apple Scab and Occurrence of Venturia Inaequalis Races on Differential Malus Genotypes in Latvia Cover

Evaluation of Apple Scab and Occurrence of Venturia Inaequalis Races on Differential Malus Genotypes in Latvia

Open Access
|Oct 2022

References

  1. Barbara, D. J. J., Roberts, A. L. L., Xu, X.-M. (2008). Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards. Plant Pathol., 57 (3), 552–561. https://doi.org10.1111/j.1365-3059.2007.01781.x10.1111/j.1365-3059.2007.01781.x
  2. Bastiaanse, H., Bassett, H. C., Kirk, C., Gardiner, S. E., Deng, C., Groenworld, R., Chagné, D., Bus, V. G. (2016). Scab resistance in ‘Geneva’ apple is conditioned by a resistance gene cluster with complex genetic control. Mol. Plant Pathol., 17 (2), 159–172. https://doi.org/10.1111/mpp.12269663852225892110
  3. Bénaouf, G., Parisi, L. (2000). Genetics of the host – pathogen relationship between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology, 90, 236–242. https://doi.org/10.1094/PHYTO.2000.90.3.2
  4. Bénaouf, G., Parisi, L., Laurens, F. (1997). Inheritance of Malus foribunda clone 821 resistance to Venturia inaequalis. IOBC/WPRS Bull, 20 (9), 1–7.
  5. Biggs, A. R., Stensvand, A. (2014). Apple scab. In: Sutton, T. B., Alswinckle, H. S., Agnello, A. M., Walgenbach, J. F. (eds.). Compendium of Apple and Pear Diseases and Pests. APS Press, T.B. St. Paul, MN, USA, pp. 8–11.
  6. Bowen, J. K., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K., Templeton, M. D. (2011). Venturia inaequalis: the causal agent of apple scab. Mol. Plant Pathol., 12, 105–122. https://doi.org/10.1111/j.1364-3703.2010.00656.x664035021199562
  7. Bus, V. G. M., Rikkerink, E. H. A., Caffier, V., Durel, C. E., Plummer, K. M. (2011). Revision of the nomenclature of the differential host–pathogen interactions of Venturia inaequalis and Malus. Annu. Rev. Phytopathol., 49, 391–413. https://doi.org/10.1146/annurev-phyto-072910-09533921599495
  8. Didelot, F., Brun, L., Parisi, L. (2007). Effects of cultivar mixtures on scab control in apple orchards. Plant Pathol., 56, 1014–1022. https://doi.org/10.1111/j.1365-3059.2007.01695.x
  9. Didelot, F., Caffier, V., Orain, G., Lemarquand, A., Parisi, L. (2016). Sustainable management of scab control through the integration of apple resistant cultivars in a low-fungicide input system. Agriculture, Ecosystems and Environment, 217 (1), 41–48. https://doi.org/10.1016/j.agee.2015.10.023
  10. Durner, E., Dean, F. Polk, D. F., Goffreda, J. C. (1992). Low-input apple production systems consumer acceptance of disease-resistant cultivars. HortScience, 27 (2), 177–179. https://doi.org/10.21273/HORTSCI.27.2.177
  11. Gessler, C., Pertot, I. (2011). Vf scab resistance of Malus. Trees – Structure and Function, 26, 1–14. https://doi.org/10.1007/s00468-011-0618-y
  12. Höfer, M., Flachowsky, H., Schröpfer, S., Peil, A. (2021). Evaluation of scab and mildew resistance in the Gene Bank collection of apples in Dresden-Pillnitz. Plants (Basel, Switzerland), 10 (6), 1227. https://doi.org/10.3390/plants10061227823424534208651
  13. Holb, I. J. (2007). Classification of apple cultivar reactions to scab in integrated and organic apple production systems. Can. J. Plant Pathol., 29, 251–260.10.1080/07060660709507467
  14. Holb, I. J., Heijne, B., Withagen, J. C. M., Gall, J. M., Jeger, M. J. (2005). Analysis of summer epidemic progress of apple scab at different apple production systems in the Netherlands and Hungary. Phytopathology, 95, 1001–1020.10.1094/PHYTO-95-100118943298
  15. Holb, I. J. (2009). Fungal disease management in environmentally friendly apple production: A review. Sustain. Agric. Rev., 2, 219–293.10.1007/978-90-481-2716-0_10
  16. Ikase, L. (2015). Results of fruit breeding in Baltic and Nordic states. In: Proceedings of the NJF 25th congress. Nordic View to Sustainable Rural Development, 16–18 June. Rīga, pp. 31–37.
  17. Ikase, L., Lācis, G. (2013). Apple breeding and genetic resources in Latvia. Acta Hortic., 976, 69–74. https://doi.org/10.17660/ActaHortic.2013.976.5
  18. Ikase, L., Drudze, I, Lācis, G. (2022). Current achievements of the Latvian apple breeding programme. Proc. Latvian Acad. Sci., Section B, 76 (4), pp. 424–431. (this issue).10.2478/prolas-2022-0066
  19. Jamar, L. (2011). Innovative strategies for the control of apple scab (Venturia inaequalis [Cke.] Wint.) in organic apple production. PhD thesis, University of Liege-Gembloux Agro-Bio Tech, Belgium.
  20. Janick, J. (2002). The pear in history, literature, popular culture, and art. Acta Hortic., 596, 4–52. https://doi.org/10.17660/ActaHortic.2002.596.1
  21. Jha, G., Thakur, K., Thakur, P. (2009). The Venturia apple pathosystem: Pathogenicity mechanisms and plant defense responses. J. Biomed. Biotechnol., 2009, 680160. https://doi.org:10.1155/2009/68016010.1155/2009/680160
  22. Kaufmane, E., Skrivele, M., Rubauskis, E., Strautiòa, S., Ikase, L., Lacis, G., Priekule, I. (2013). Development of fruit science in Latvia. Proc. Latvian Acad. Sci., Section B, 67, 71–83.10.2478/prolas-2013-0013
  23. Lateur, M., Populer, C. (1994). Screening fruit tree genetic resources in Belgium for disease resistance and other desirable characters. Euphytica, 77, 147–153.10.1007/BF02551478
  24. Lespinasse, Y., Durel, C. E., Laurens, F., Chevalier, M., Pinet, C., Parisi, L. (2000). A European project: D.A.R.E. – Durable Apple Resistance in Europe (FAIR5 CT97-3898) Durable resistance of apple to scab and powdery-mildew one step more towards an environmental friendly orchard. Acta Hortic., 538, 197–200. https://doi.org/10.17660/ActaHortic.2000.538.32
  25. Liliane, T. N., Charles, M. S. (2020). Factors affecting yield of crops. Agron. Clim. Chang. Food Secur., 1–16. DOI: 10.5772/intechopen.90672.10.5772/intechopen.90672
  26. MacHardy, W. E. (1996). Apple Scab: Biology, Epidemiology, and Management. American Phytopathological Society (APS Press), St. Paul, Minnesota. 545 pp.
  27. MacHardy, W. E., Gadoury, D. M., Gessler, C. (2001). Parasitic and biological fitness of Venturia inaequalis: Relationship to disease management strategies. Plant Dis., 85, 1036–1051. https://doi.org/10.1094/PDIS.2001.85.10.103630823274
  28. Masny, S. (2017). Occurrence of Venturia inaequalis races in Poland able to overcome specific apple scab resistance genes. Eur. J. Plant Path., 147 (2), 313–323. https://doi.org10.1007/s10658-016-1003-x10.1007/s10658-016-1003-x
  29. Mayr, U., Michalek, S., Treutter, D., Feucht, W. (1997). Phenolic compounds of apple and their relationship to scab resistance. J. Phytopathol., 145, 69–75.10.1111/j.1439-0434.1997.tb00366.x
  30. Meier, U., Graf, H., Hack, H., Hess, M., Kennel, W., Klose, R., Mappes, D., Seipp, D., Stauss, R., Streif, J., Van den Boom, T. (1994). Phänologische Entwick-lungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannesbeere (Ribes-Arten) und der Erdbeere (Fragaria × ananassa Duch.). Nachrichtenbl [Phenological stages of development of pome (Malus domestica Borkh. and Pyrus communis L.), stone fruits (Prunus spp.), currants (Ribes spp.) and strawberries (Fragaria × ananassa Duch.)]. Deut. Pflanzenschutzd. [Bulletin of the German Plant Protection Service]. 46, 141–153 (in German).
  31. Papp, D., Gao, L., Thapa, R., Olmstead, D., Khan, A. (2020). Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. CABI Agric. Biosci., 1, 16. https://doi.org/10.1186/s43170-020-00017-4.
  32. Parisi, L., Lespinasse, V., Guillaumes, J., Kruger, J. (1993). A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology, 83 (5), 533–537.10.1094/Phyto-83-533
  33. Patocchi, A., Frei, A., Frey, J. E., Kellerhals, M. (2009). Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol. Breed., 24, 337–347.10.1007/s11032-009-9295-6
  34. Patocchi, A., Wehrli, A., Dubuis, P.-H., Auwerkerken, A., Leida, C., Cipriani, G., Passey, T., Staples, M., Didelot, F., Philion, V., Peil, A., Laszakovits, H., Ruhmer, T., Boeck, K., Baniulis, D., Strasser, K., Vavra, R., Guerra, W., Masny, S., Ruess, F., LeBerre, F., Nybom, H., Tartarini, S., Spornberger, A., Pikunova, A., Bus, V. G. M. (2020). Ten years of VINQUEST: First insight for breeding new apple cultivars with durable apple scab resistance. Plant Dis., 104, 2074–2081. https://doi.org10.17660/ActaHortic.2021.1307.4810.1094/PDIS-11-19-2473-SR32525450
  35. Pikunova, A. V., Sedov, E. N. (2019). The composition of Venturia inaequalis races in the Oryol region [Расовый состав Venturia inaequalis в условиях Орловской области]. Mycology and Phytopathology [Микология и фитопатология]. 57 (5), 293–300 (in Russian). https://doi.org10.1134/S002636481905004010.1134/S0026364819050040
  36. Polat, Z., Bayraktar, H. (2021). Resistance of Venturia inaequalis to multiple fungicides in Turkish apple orchards. J. Phytopathol., 169 (6), 360–368. https://doi.org/10.1111/jph.12990
  37. Rancane, R., Zagorska, V. (2021). Apple scab control and resistance risk of Venturia inaequalis to curative fungicides in apple orchards. In: Proceedings of the 4th International Scientific Conference. Sustainable Horticulture from Plant to Product: Challenges in Temperate Climate, 25–26 August 2021. Dobele, p. 65.
  38. Rancane, R., Ozoliòa-Pole, L. (2021). LLU Augu aizsardzības zinātniskā institūta “Agrihorts” novērojumi par kaitīgo organismu izplatību ābeļu stādījumos 2021. gada sezonā [Observations of the LLU Plant Protection Scientific Institute “Agrihorts” on the spread of harmful organisms in the apple orchards in the 2021 season]. Profesionālā dārzkopība [Professional Horticulture], 1 (14), 49–53. http://laukutikls.lv/sites/laukutikls.lv/files/informativie_materiali/profesionala_darzkopiba_nr14.pdf (in Latvian).
  39. Roberts, A. L., Crute, I. R. (1994). Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from Malus floribunda. Nor. J. Agric. Sci., 17, 403–406.
  40. Rossi, V., Giogue, S., Bugiani, R. (2007). A-scab (Apple scab), a simulation model for estimating risk of Venturia inaequalis primary infections. IOBC-WPRS Bull., 37, 300–308. https://doi.org10.1111/j.1365-2338.2007.01125.x10.1111/j.1365-2338.2007.01125.x
  41. Sandskär, B., Liljeroth, E. (2005). Incidence of races of the apple scab pathogen (Venturia inaequalis) in apple growing districts in Sweden. Acta Agric Scand Sect B. -Plant Soil Sci., 55 (2), 143–150. https://doi.org/10.1080/09064710510029042
  42. Sharma, J. N. (2005). Scab and premature leaf fall diseases of apple and their management. In: Sharma R., Sharma J. (eds.). Challenging Problems in Horticultural and Forest Pathology. Indus Publishing Co., New Delhi, pp. 11–31.
  43. Stensvand, A., Amundsen, T., Semb, L. (1996). Observations on wood scab caused by Venturia inaequalis and V. pyrina in apple and pear in Norway. Nor. J. Agric. Sci., 10, 533–540.
  44. Tiirmaa, K., Univer, N., Univer, T. (2006). Evaluation of apple cultivars for scab resistance in Estonia. Agron. Res., 4 (Special issue), 413–416.
  45. Tiirmaa, K., Univer, N., Univer, T. (2009). Evaluation of apple cultivars for scab resistance in Estonia. Agron. Res., 7 (Special issue I), 528–531.
  46. Turechek, W. W. (2004). Apple diseases and their management. In: Diseases of Fruits and Vegetables. Diagnosis and Management. Vol. I. Naqvi, S.A.M.H. (ed.) Kluwer Academic Publishers, Dordrecht, pp. 1–108.10.1007/1-4020-2606-4_1
  47. Valiuškaitė, A., Raudonis, L., Lanauskas, J., Sasnauskas, A., Survilienë, E. (2009). Disease incidence on different cultivars of apple tree for organic growing. Agron. Res., 7 (Special issue I), 536–541.
  48. Valsangiacomo, C., Gessler, C. (1988). Role of the cuticular membrane in ontogenic and Vf – resistance of apple leaves against Venturia inaequalis. Phytopathology, 78, 1066–1069.10.1094/Phyto-78-1066
  49. Verma, L. R., Sharma, R. C. (1999). Diseases of Horticultural Crops: Fruits. Indus Publishing Company, New Delhi. 718 pp.
  50. Williams, E. B., Brown, A. G. (1968). A new physiologic race of Venturia inaequalis. Annu. Rev. Phytopathol., 7, 223–246.10.1146/annurev.py.07.090169.001255
  51. Zuļģe, N., Kāle, A., Gospodaryk, A., Vēvere, K., Moročko-Bičevska, I. (2017). Establishment of nuclear stock collections for apple and pear in Latvia. Proc. Latvian Acad. Sci., Section B, 71 (3), 156–165. https://doi.org/10.1515/prolas-2017-0027
DOI: https://doi.org/10.2478/prolas-2022-0075 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 488 - 494
Submitted on: Feb 8, 2021
|
Accepted on: Jun 27, 2022
|
Published on: Oct 14, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Olga Sokolova, Inga Moročko-Bičevska, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.