References
- Amante, C., Eakins, B. W. (2009). ETOPO1 1 arc-minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA. https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf (accessed 14.03.2022).
- Bautista, C. B., Bautista, M. L. P., Oike, K., Wu, F. T., Punongbayan, R. S. (2001). A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339, 279–310.10.1016/S0040-1951(01)00120-2
- Besana, G. M., Negishi, H., Ando, M. (1997). The three-dimensional attenuation structures beneath the Philippine archipelago based on seismic intensity data inversion. Earth Planet Sci. Lett., 15, 1–11.10.1016/S0012-821X(97)00112-X
- Brothers, D. S., Miller, N. C., Barrie, J. V., Haeussler, P. J., Greene, H. G., Andrews, B. D., Zielke, O., Watt, J., Dartnell, P. (2020). Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology. Earth Planet Sci. Lett., 530, 115882.10.1016/j.epsl.2019.115882
- Chadwick, W. W., Merle, S. G., Baker, E. T., Walker, S. L., Resing, J. A., Butterfield, D. A., Anderson, M. O., Baumberger, T., Bobbitt, A. M. (2018). A recent volcanic eruption discovered on the central Mariana back-arc spreading center. Front. Earth Sci., 6, 1–16.10.3389/feart.2018.00172
- Christensen, U. R. (1996). The influence of trench migration on slab penetration into the lower mantle. Earth Planet Sci. Lett., 140, 27–39.10.1016/0012-821X(96)00023-4
- Das, P., Tien-Shun Lin, A., Chen, M.-P. P., Miramontes, E., Liu, C.-S., Huang, N.-W., Kung, J., Hsu, S.-K., Pillutla, R. K., Nayak, K. (2021). Deep-sea submarine erosion by the Kuroshio Current in the Manila accretionary prism, offshore Southern Taiwan. Tectonophysics, 807, 228813.10.1016/j.tecto.2021.228813
- Deschamps, A., Lallemand, S. (2003). Geodynamic setting of Izu-Bonin-Mariana boninites. In: Larter, R. D., Leat, P. T. Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes, Vol. 219. Geological Society of London, London, pp. 163–185.10.1144/GSL.SP.2003.219.01.08
- Dong, D., Zhang, Z., Bai, Y., Fan, J., Zhang, G. (2018). Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction. Tectonophysics, 722, 410–421.10.1016/j.tecto.2017.11.030
- Fan, J., Zhao, D. (2019). P-wave anisotropic tomography of the central and southern Philippines. Phys. Earth Planet. Inter., 286, 154–164.10.1016/j.pepi.2018.12.001
- Freymuth, H., Vils, F., Willbold, M., Taylor, R., Elliott, T. (2015). Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth Planet Sci. Lett., 432, 176–186.10.1016/j.epsl.2015.10.006
- Fryer, P., Becker, N., Appelgate, B., Martinez, F., Edwards, M., Fryer, G. (2003). Why is the Challenger Deep so deep? Earth Planet Sci. Lett., 211, 259–269.10.1016/S0012-821X(03)00202-4
- Gardner, J. V., Armstrong, A. A., Calder, B. R., Beaudoin, J. (2014). So, how deep is the Mariana Trench? Mar. Geod., 37, 1–13.10.1080/01490419.2013.837849
- Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C. (2007). Swath-bathymetric mapping. Rep. Polar Marine Res., 557, 38–45.
- GEBCO Compilation Group (2020) GEBCO 2020 Grid. doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9. https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed 14.03.2022).
- Grad, M., Tiira, T., ESC Working Group (2009). The Moho depth map of the European Plate, Geophys. J. Int., 176 (1), 279–292.10.1111/j.1365-246X.2008.03919.x
- Guotana, J. M. R., Payot, B. D., Dimalanta, C. B., Ramos, N. T., Faustino-Eslava, D. V., Queaño, K. L., Yumul, G. P. (2017). Arc and backarc geo-chemical signatures of the proto-Philippine Sea Plate: Insights from the petrography and geochemistry of the Samar Ophiolite volcanic section. J. Asian Earth Sci., 142, 77–92.10.1016/j.jseaes.2016.07.031
- Hall, R. (1995). Active margins and marginal basins of the Western Pacific. The Philippine Sea Plate: Magnetism and reconstructions. Geophys. Monogr. Ser. AGU, 88, 371–404.10.1029/GM088p0371
- Haren, van H., Berndt, C., Klaucke, I. (2017). Ocean mixing in deep-sea trenches: New insights from the Challenger Deep, Mariana Trench. Deep Sea Res. Part I Oceanogr. Res., 129, 1–9.10.1016/j.dsr.2017.09.003
- Harris, P. T., Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol, 285, 69–86.10.1016/j.margeo.2011.05.008
- Harris, P. T., Barrie, J. V., Conway, K. W., Greene, H. G. (2014a). Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins. Sea Res. Part II Top., 104, 83–92.10.1016/j.dsr2.2013.06.017
- Harris, P. T., Macmillan-Lawler, M., Rupp, J., Baker, E. K. (2014b). Geo-morphology of the oceans. Mar. Geol., 352, 4–24.10.1016/j.margeo.2014.01.011
- Hashima, A., Sato, T., Sato, H., Asao, K., Furuya, H., Yamamoto, S., Kameo, K., Miyauchi, T., Ito, T., Tsumura, N., Kaneda, H. (2016). Simulation of tectonic evolution of the Kanto Basin of Japan since 1 Ma due to subduction of the Pacific and Philippine Sea plates and the collision of the Izu-Bonin arc. Tectonophysics, 679, 1–14.10.1016/j.tecto.2016.04.005
- Hessler, R. R., Ingram, C. L., Yayanos, A. A., Burnett, B. R. (1978). Scavenging amphipods from the floor of the Philippine Trench. Deep Sea Res. Part I Oceanogr. Res., 25, 1029–1047.10.1016/0146-6291(78)90585-4
- Hilde, T. W. C., Lee, C. S. (1984). Origin and evolution of the West Philippine Basin: A new interpretation. Tectonophysics, 102, 85–104.10.1016/0040-1951(84)90009-X
- Hilst R., v.d., Seno, T. (1993). Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet Sci. Lett., 120, 395–407.10.1016/0012-821X(93)90253-6
- Hirano, S., Nakata, T., Sangawa, A. (1986). Fault topography and quaternary faulting along the Philippine Fault zone, Central Luzon, the Philippines. J. Geog., 95, 1–23.10.5026/jgeography.95.2_71
- Hillier, J. K. (2011). Chapter Twelve – Submarine Geomorphology: Quantitative Methods Illustrated with the Hawaiian Volcanoes. In: Smith, M. J., Paron, P., Griffiths, J. S. (eds.) Developments in Earth Surface Processes. Vol. 15. Elsevier, pp. 359–375.10.1016/B978-0-444-53446-0.00012-4
- Holt, A. F., Royden, L. H., Becker, T. W., Faccenna, C. (2018). Slab interactions in 3-D subduction settings: The Philippine Sea Plate region. Earth Planet Sci. Lett., 489, 72–83.10.1016/j.epsl.2018.02.024
- Idárraga-García, J., García-Varón, J., León, H. (2021). Submarine geomorphology, tectonic features and mass wasting processes in the archipelago of San Andres, Providencia and Santa Catalina (western Caribbean). Mar. Geol., 435, 106458.10.1016/j.margeo.2021.106458
- IHO (2012). GEBCO Gazetteer of Undersea Feature Names, IHO-IOC. https://www.ngdc.noaa.gov/gazetteer/HYPERLINK “” [(accessed 07.04.2022).
- Jamieson, A. J., Stewart, H. A., Rowden, A. A., Clark, M. R. (2020). Chapter 59 – Geomorphology and benthic habitats of the Kermadec Trench, Southwest Pacific Ocean. In: Harris, P. T., Baker, E. (eds.) Seafloor Geomorphology as Benthic Habitat.2nd edn. Elsevier, pp. 949–966.10.1016/B978-0-12-814960-7.00059-2
- Karig, D. E. (1983). Accreted terranes in the northern part of the Philippine archipelago. Tectonics, 2, 211–236.10.1029/TC002i002p00211
- Kawabe, M. (1993). Deep water properties and circulation in the western North Pacific. Deep Ocean Circulation: Physical and Chemical Aspects, 17–37.10.1016/S0422-9894(08)71315-1
- Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosci., 5 (1), 28–42.10.2478/s13533-012-0120-0
- Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environ. Eng. Manag. J., 2 (16), 449–458.10.30638/eemj.2017.045
- Lemenkova, P. (2019a). Statistical analysis of the Mariana Trench geomorphology R programming language, Geodesy Cartogr. 45 (2), 57–84.10.3846/gac.2019.3785
- Lemenkova, P. (2019b). Testing linear regressions by StatsModel Library of Python for oceanological data interpretation. Aquat. Sci. Eng., 34, 51–60.10.26650/ASE2019547010
- Lemenkova, P. (2019c). Topographic surface modelling using raster grid datasets by GMT: Example of the Kuril-Kamchatka Trench, Pacific Ocean. Rep. Geodesy Geoinformatics, 108, 9–22.10.2478/rgg-2019-0008
- Lemenkova, P. (2019d). GMT based comparative analysis and geomorpho-logical mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geogr. Tech., 14 (2), 39–48.10.21163/GT_2019.142.04
- Lemenkova, P. (2020a). Geomorphology of the Puerto Rico Trench and Cayman Trough in the context of the geological evolution of the Caribbean Sea. Ann. Univ. Mariae Curie-Skùodowska, B Geogr. Geol. Mineral. Petrogr., 75, 115–141.
- Lemenkova, P. (2020b). The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geol. Geophys. Environ., 46 (3), 205–222.10.7494/geol.2020.46.3.205
- Lemenkova, P. (2020c). Using GMT for 2D and 3D modeling of the Ryukyu Trench topography, Pacific Ocean. Misc. Geogr., 25 (3), 1–13.10.2478/mgrsd-2020-0038
- Lemenkova, P. (2020d). GEBCO gridded bathymetric datasets for mapping Japan Trench geomorphology by means of GMT scripting toolset. Geodesy Cartogr., 46 (3), 98–112.10.3846/gac.2020.11524
- Lemenkova, P. (2020e). Sentinel-2 for high resolution mapping of slope-based vegetation indices using machine learning by SAGA GIS. Transylv. Rev. Syst. Ecol. Res., 22 (3), 17–34.10.2478/trser-2020-0015
- Lemenkova, P. (2021a). Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean. Pol. Polar Res., 42 (1), 1–23.
- Lemenkova, P. (2021b). Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean. Baltica, 34 (1), 27–46.10.5200/baltica.2021.1.3
- Lemenkova, P. (2021c). The visualization of geophysical and geomorpho-logic data from the area of Weddell Sea by the Generic Mapping Tools. Stud. Quat., 38 (1), 19–32.
- Lemenkova, P. (2021d). SAGA GIS for computing multispectral vegetation indices by landsat TM for mapping vegetation greenness. Contemp. Agric., 70 (1–2), 67–75.10.2478/contagri-2021-0011
- Lemenkova, P. (2021e). Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness. Czech Polar Rep., 11 (1), 67–85.10.5817/CPR2021-1-6
- Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H., Weatherall, P. (2018). The Nippon Foundation — GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences, 8, 63.10.3390/geosciences8020063
- Normark, W. R., Carlson, P. R. (2003). Giant submarine canyons: Is size any clue to their importance in the rock record? Geol. Soc. Amer. Spec., 370, 175–190.10.1130/0-8137-2370-1.175
- Okino, K., Ohara, Y., Fujiwara, T., Lee, S. M., Koizumi, K., Nakamura, Y., Wu, S. (2009). Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate. Tectonophysics, 466, 213–228.10.1016/j.tecto.2007.11.017
- Ramos, N. T., Tsutsumi, H., Perez, J. S., Bermas, P. P. (2012). Uplifted marine terraces in Davao Oriental Province, Mindanao Island, Philippines and their implications for large prehistoric offshore earthquakes along the Philippine trench. J. Asian Earth Sci., 45, 114–125.10.1016/j.jseaes.2011.07.028
- Schenke, H. W., Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydro-graphische Nachrichten, 25, 16–21.
- Seno, T., Maruyama, S. (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102, 53–84.10.1016/0040-1951(84)90008-8
- Stern, R. J. (2021). Ocean Trenches. In: Alderton, D., Elias, S. A. (eds.) Encyclopedia of Geology. 2nd edn. Academic Press, 845–854.10.1016/B978-0-08-102908-4.00099-0
- Suetova, I. A., Ushakova, L. A., Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geogr. Nat. Resour., 4, 138–142.
- Suzuki, S., Pena, R. E., Tam, T. A. I., Yumul Jr., G. P., Dimalanta, C. B., Us, M., Ishida, K. (2017). Development of the Philippine Mobile Belt in northern Luzon from Eocene to Pliocene. J. Asian Earth Sci., 142, 32–44.10.1016/j.jseaes.2016.08.018
- Yu, G. K., Chang, W. Y. (1991). Lateral variations in the upper mantle structure of the Philippine Sea basin. Terr. Atmospheric Ocean. Sci., 2, 281–296.10.3319/TAO.1991.2.4.281(T)
- Yu, G. K., Tsai, M. T., Hwang, R. D. (2000). Velocity dispersion and amplitude attenuation of Rayleigh waves across the Philippine Sea. Terr. Atmospheric Ocean. Sci., 11, 515–524.10.3319/TAO.2000.11.2.515(T)
- Wessel, P., Smith, W. H. F. (1996). A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth, 101, 8741–8743.10.1029/96JB00104
- Wessel, P., Smith, W. H. F. (1991). Free software helps map and display data. EOS Trans. AGU, 72, 441.10.1029/90EO00319
- Zhang, C., Liu, Q., Li, X., Wang, M., Liu, X., Yang, J., Xu, J., Jiang, Y. (2021). Spatial patterns and co-occurrence networks of microbial communities related to environmental heterogeneity in deep-sea surface sediments around Yap Trench, Western Pacific Ocean. Sci. Total Environ., 759, 143799.10.1016/j.scitotenv.2020.143799