References
- Abdelghany, A. M., El-Banna, A. A., Salama, E. A., Ali, M. M., Al-Huqail, A. A., Ali, H. M., Paszt, L. S., El-Sorady, G. A., Lamlom, S. F. (2022). The individual and combined effect of nanoparticles and biofertilizers on growth, yield, and biochemical attributes of peanuts (Arachis hypogea L.). Agronomy, 12 (2), 398.10.3390/agronomy12020398
- Abdellatif, K. F., Abdelfattah, R. H., El-Ansary, M. S. F. (2016). Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran J. Biotechnol., 14 (4), 250–259.10.15171/ijb.1309543499528959343
- Abdelsalam, N. R., Abdel-Megeed, A., Ali, H. M., Salem, M. Z. M., Al-Hayali, M. F. A., Elshikh, M. S. (2018). Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicol. Environ. Safety, 155, 76–85. https://doi.org/10.1016/j.ecoenv.2018.02.06910.1016/j.ecoenv.2018.02.06929510312
- Ahmed, B., Dwidwdi, S., Abdin, M. Z., Azam, A., Al-Shaeri, M., Khan, M. S., Saquib, Q., Al-Khedhairy, A. A., Musarrat, J. (2017). Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci. Rep., 7, 40685.10.1038/srep40685
- Ahmed, B., Shahid, M., Khan, M. S., Musarrat, J. (2018). Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb. Metallomics, 10, 1315–1327. doi: 10.1039/c8mt00093j.10.1039/C8MT00093J30141802
- Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 7, 17–28.10.1016/j.jare.2015.02.007470347926843966
- Asgari, F., Majd, A., Jonoubi, P., Najafi, F. (2018). Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol. Biochem., 127, 152–160.10.1016/j.plaphy.2018.03.02129587167
- Athanassiou, C. G., Kavallieratos, N. G., Benelli, G., Losic, D., Rani, P. U., Desneux, N. (2018). Nanoparticles for pest control: current status and future perspectives. J. Pest. Sci., 91, 1–15.10.1007/s10340-017-0898-0
- Azevedo, S. L., Holz, T., Rodrigues, J., Monteiro, T., Costa, F. M., Soares, A. M. V. M., Loureiro, S. (2017). A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials. Sci. Total Environ., 579, 337–344.10.1016/j.scitotenv.2016.11.09527887838
- Bhatia, S. (2016). Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural Polymer Drug Delivery Systems. Springer, Cham, pp. 33–93.10.1007/978-3-319-41129-3_2
- Burlaka, O. M., Pirko, Y. V., Yemets, A. I., Blume, Y. B. (2015). Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol. Genet., 49, 349–357.10.3103/S009545271506002X
- Çekiç, F. Ö., Ekinci, S., Inal, M. S., Ünal, D. (2017). Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turkish J. Biol., 41, 700–707.10.3906/biy-1608-36
- Chichiriccò, G., Poma, A. (2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials, 5, 851–873. doi:10.3390/nano5020851.10.3390/nano5020851531292028347040
- Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L., Landry, M. P. (2018). Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol., 36 (9), 882–897.10.1016/j.tibtech.2018.03.00929703583
- Das, D., Datta, A. K., Kumbhakar, D. V., Ghosh, B., Pramanik, A., Gupta, S. (2018). Nanoparticle (CdS) interaction with host (Sesamum indicum L.): Its localization, transportation, stress induction and genotoxicity. J. Plant Interact., 13 (1), 182–194.10.1080/17429145.2018.1455903
- De La Torre-Roche, R., Hawthorne, J., Deng, Y., Xing, B., Cai, W., Newman, L. A.,Wang, Q., Ma, X., Hamdi, H., White, J. C. (2013). Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol., 47 (21), 12539–12547.10.1021/es403480924079803
- Demirer, G. S., Zhang, H., Matos, J., Goh, N., Cunningham, F. J., Sung, Y., Chang, R., Aditham, A. J., Chio, L., Cho, M. J., Staskawicz, B., Landry, M. P. (2018). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. BioRxiv. doi: https://doi.org/10.1101/179549.10.1101/179549
- Doğaroğlu, Z. G., Köleli, N. (2017). TiO2 and ZnO nanoparticles toxicity in barley (Hordeum vulgare L.). Soil Air Water, 45 (11). https://doi.org/10.1002/clen.20170009610.1002/clen.201700096
- Doğaroğlu Z. G., Kölelia N. (2018). Co-application of EDDS and ZnO nanoparticles with TiO2Ag nanoparticles on rye. Int. Adv. Res. Eng. J., 02 (01), 009–013.
- Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A., Ahmed, M., Ansari, S. M., Alwathnani, H. A., Dwivedi, S., Musarra, J., Praveen, S. (2016). Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biol. Res., 49, 20.10.1186/s40659-016-0080-9479713426988690
- Faizan, M., Faraz, A., Yusuf, M., Khan, S. T., Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56, 678–686.10.1007/s11099-017-0717-0
- Fincheira, P., Tortella, G., Duran, N., Seabra, A. B., Rubilar, O. (2020). Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit. Rev. Biotechnol., 40 (1), 15–30.10.1080/07388551.2019.168193131658818
- Finiuk, N., Buziashvili, A., Burlaka, O., Zaichenko, A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Y., Yemets, A. (2017). Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell. Tissue Organ Cult., 131, 27–39.10.1007/s11240-017-1259-7
- Giraldo, J. P., Wu, H., Newkirk, G. M., Kruss, S. (2019). Nanobiotechnology approaches for engineering smart plant sensors. Nature Nanotechnol., 14 (6), 541–553.10.1038/s41565-019-0470-631168083
- Gokak, I. B., Taranath, T. C. (2015). Seed germination and growth responses of Macrotyloma uniflorum (Lam.) Verdc. exposed to zinc and zinc nanoparticles. Int. J. Environ. Sci., 5, 840–847.
- Gottschalk, F., Lassen, C., Kjoelholt, J., Christensen, F., Nowack, B. (2015). Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int. J. Environ. Res. Public Health, 12, 5581–5602.10.3390/ijerph120505581445498626006129
- Gruyer, N., Dorais, M., Bastien, C., Dassylva, N., Triffault-Bouchet, G. (2014). Interaction between silver nanoparticles and plant growth. ISHS Acta Horticulturae 1037. In: International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant Factory - Greensys 2013, pp. 795–800. doi: 10.17660/ActaHortic.2014.1037.105.10.17660/ActaHortic.2014.1037.105
- Gui, X., Zhang, Z., Liu, S., Ma, Y., Zhang, P., He, X., Li, Y., Zhang, P., Li, H., Rui, Y., Liu, L., Cao, W. (2015). Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One, 10 (8), e0134261. doi: 10.1371/journal.pone.0134261.10.1371/journal.pone.0134261455282926317617
- Helaly, M. N., El-Metwally, M. A., El-Hoseiny, H., Omar, S. A., El-Sheery, N. I. (2014). Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Austral. J. Crop Sci., 8 (4), 612–624.
- Hernandez-Viezcas, J. A., Castillo-Michel, H., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2016). Interactions between CeO2 nanoparticles and the desert plant mesquite: A spectroscopy approach. ACS Sustain. Chem. Eng., 4 (3), 1187–1192.10.1021/acssuschemeng.5b01251
- Hossain, Z., Mustafa, G., Komatsu, S. (2015). Plant responses to nano-particle stress. Int. J. Mol. Sci., 16, 26644–26653. doi:10.3390/ijms161125980.10.3390/ijms161125980466183926561803
- Hu, J., HuiyGuo, H., Li, J., Wang, Y., Xiao, L, Xing, B. (2017). Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J. Nanobiotechnol., 15, 51.10.1186/s12951-017-0286-1550485828693496
- Hubbard, J. D., Lui, A., Landry, M. P. (2020). Multiscale and multi-disciplinary approach to understanding nanoparticle transport in plants. Curr. Opin. Chem. Eng., 30, 135–143. https://doi.org/10.1016/j.coche.2020.10065910.1016/j.coche.2020.100659
- Hussain, A., Ali, S., Rizwan, M., Zia Ur Rehman, M., Javed, M. R., Imran, M., Chatha, S. A. S., Nazir, R. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut., 242, 1518–1526. doi: 10.1016/j.envpol.2018.08.036.10.1016/j.envpol.2018.08.03630144725
- Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Hussain, M., Ejaz, M., Yasmeen, F. (2019). Effect of silver nanoparticles on growth of wheat under heat stress. Iranian J. Sci. Technol. Transact. A Sci., 43 (2), 387–395.10.1007/s40995-017-0417-4
- Jiang, L., Ding, L., He, B., Shen, J., Xu, Z., Yin, M., Zhang, X. (2014). Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA. Nanoscale, 6, 9965.10.1039/C4NR03481C
- Joldersma, J., Liu, Z. (2018). Plant genetics enters the nano age? Nanoparticle-mediated plant transformation. J. Integr. Plant Biol., 60 (6). doi: 10.1111/jipb.12646.10.1111/jipb.1264629484813
- Keerthana, P., Vijayakumar, S., Vidhya, E., Punitha, V. N., Nilavukkarasi, M., Praseetha, P. K. (2021). Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti-infection and growth promotion in plants. Industr. Crops Prod., 170, 113762.10.1016/j.indcrop.2021.113762
- Keshari, A. K., Srivastava, R., Singh, P., Yadav, V. B., Nath, G. (2020). Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med., 11(1), 37–44.10.1016/j.jaim.2017.11.003712537030120058
- Khan, I., Saeed, K., Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian J. Chem., 12 (7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.01110.1016/j.arabjc.2017.05.011
- Kik, K., Bukowska, B., Sicińska, P. (2020). Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ. Pollut., 262, 114297.10.1016/j.envpol.2020.11429732155552
- Kim, D. H., Gopal, J., Sivanesan, I. (2017). Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv., 7, 36492–36505. doi: 10.1039/C7RA07025J.10.1039/C7RA07025J
- Kińska, K., Jiménez-Lamana, J., Kowalska, J., Krasnodębska-Ostręga, B., Szpunar, J. (2018). Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis alba using single particle ICP-MS. Sci. Total Environ., 615, 1078–1085.10.1016/j.scitotenv.2017.09.20329751411
- Kokina, I., Gerbreders, V., Sledevskis, E., Bulanovs, A. (2013). Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J. Biotechnol., 165 (2), 127–132.10.1016/j.jbiotec.2013.03.011
- Kokina, I., Jahundoviča, I., Mickeviča, I., Jermaļonoka, M., Strautiņš, J., Popovs, S., Ogurcovs, A., Sledevskis, E., Polyakov, B., Gerbreders, V. (2017a). Target transportation of auxin on mesoporous Au/SiO2 nano-particles as a method for somaclonal variation increasing in flax (L. usitatissimum L.). J. Nanomater., 2017, 7143269. https://doi.org/10.1155/2017/714326910.1155/2017/7143269
- Kokina, I., Jahundoviča, I., Mickeviča, I., Sledevskis, E., Ogurcovs, A., Polyakov, B., Jermaļonoka, M., Strautiņš, J., Gerbreders, V. (2015). The impact of CdS nanoparticles on ploidy and DNA damage of rucola (Eruca sativa Mill.) plants. J. Nanomater., 2015, 470250.10.1155/2015/470250
- Kokina, I., Mickeviča I., Jahundoviča, I., Ogurcovs, A., Krasovska, M., Jermaļonoka, M., Mihailova, M., Tamanis, E., Gerbreders, V. (2017b). Plant explants grown on medium supplemented with Fe3O4 nanoparticles have a significant increase in embryogenesis. J. Nanomater., 2017, 4587147. doi: 10.1155/2017/458714710.1155/2017/4587147
- Kokina, I., Mickeviča,I., Jermaļonoka, M., Bankovska, L., Gerbreders, V., Ogurcovs, A., Jahundoviča, I. (2017c). Case study of somaclonal variation in resistance genes Mlo and Pme3 in flaxseed (Linum usitatissimum L.) induced by nanoparticles. Int. J. Genom., 2017, 1676874. https://doi.org/10.1155/2017/167687410.1155/2017/1676874534327528326314
- Kokina, I., Sļedevskis, E., Gerbreders, V., Grauda, D., Jermaļonoka, M., Valaine, K., Gavarane, I., Pigiņka, I., Filipovičs, M., Rashal, I. (2012). Reaction of flax (Linum usitatissimum L.) calli culture to supplement of medium by carbon nanoparticles. Proc. Latvian Acad. Sci. Section B, 66 (4/5), 200–209.10.2478/v10046-012-0010-3
- Kořenková, L., Šebesta, M., Urík, M., Kolenčík, M., Kratošová, G., Bujdoš, M., Vávra, I., Dobročka, E. (2017). Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agricult. Scand., Section B Soil Plant Sci., 67 (4), 285–291.10.1080/09064710.2016.1267255
- Kumar, U. J., Bahadur, V., Prasad, V. M., Mishra, S., Shukla, P. K. (2017). Effect of different concentrations of iron oxide and zinc oxide nano-particles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. Int. J. Curr. Microbiol. Appl. Sci., 6 (8), 2440–2445.10.20546/ijcmas.2017.608.288
- Lee, W.-M., Kwak, J. I., An, Y.-J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere, 86 (5), 491–499.10.1016/j.chemosphere.2011.10.01322075051
- Luo, P, Roca, A., Tiede, K., Privett, K., Jiang, J., Pinkstone, J., Ma, G., Veinot, J., Boxall, A. (2018). Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems. J. Environ. Sci., 64, 62–71.10.1016/j.jes.2016.07.01929478662
- Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ., 408, 3053–3061.10.1016/j.scitotenv.2010.03.03120435342
- Ma, C., White, J. C., Zhao, J., Zhao, Q., Xing, B. (2018). Uptake of engineered nanoparticles by food crops: Characterization, mechanisms, and implications. Annu. Rev. Food Sci. Technol., 9, 129–53.10.1146/annurev-food-030117-01265729580140
- Mady, M. F., Kelland, M. A. (2020). Review of nanotechnology impacts on oilfield scale management. ACS Appl. Nano Mater., 3 (8), 7343–7364.10.1021/acsanm.0c01391
- Manesh, R. R., Grassi, G., Bergami, E., Marques-Santos, L. F., Faleri, C., Liberatori, G., Corsi, I. (2018). Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol. Environ. Saf., 148, 359–366. doi: 10.1016/j.ecoenv.2017.10.051.10.1016/j.ecoenv.2017.10.05129096262
- Martin-Ortigosa, S., Valenstein, J. S., Lin, V. S. Y., Trewyn, B. G., Wang, K. (2012). Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to pant cells via the biolistic method. Adv. Funct. Mater., 22, 3576–3582.10.1002/adfm.201200359
- Mehrian, S. K., De Lima, R. (2016). Nanoparticles cyto and genotoxicity in plants: Mechanisms andabnormalities. Environ. Nanotechnol. Monit. Manag., 6, 184–193.10.1016/j.enmm.2016.08.003
- Minetto, D., Ghirardini, A.V., Libralato, G. (2016). Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C 60 engineered nanoparticles: An overview. Environ. Int., 92, 189–201.10.1016/j.envint.2016.03.04127107224
- Moll, G., Gogos, A., Bucheli, T. D., Widmer, F., van der Heijden, M. G. (2016). Effect of nanoparticles on red clover and its symbiotic microorganisms. J. Nanobiotechnol., 14, 36. doi: 10.1186/s12951-016-0188-7.10.1186/s12951-016-0188-7486218627161241
- Narendhran, S., Rajiv, P., Sivaraj, R. (2016). Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity. Bull. Mater. Sci., 39 (2), 415–421.10.1007/s12034-016-1172-4
- Nuzhyna, N. V., Volch, I. R., Hnatiuk, I. S., Golubenko, A. V., Bannikov, M. A. (2017). Histological peculiarities of Triticum aestivum L. calli cultures’ morphogenesis under antibiotic Ceftriaxone influence. Cytol. Genet., 51 (3),149–154.10.3103/S0095452717030112
- Pallavi, Mehta, C. M., Srivastava, R., Arora, S., Sharma, A. K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6 (2), 254.10.1007/s13205-016-0567-7512516028330326
- Panpatte, D. G., Jhala, Y. K., Shelat, H. N., Vyas, R. V. (2016). Nano-particles: The next generation technology for sustainable agriculture. In: Singh, D. P. et al. (eds.). Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp. 289–300. doi: 10.1007/978-81-322-2644-4_18.10.1007/978-81-322-2644-4_18
- Raliya, R., Nair, R., Chavalmane, S., Wang, W. N., Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7, 1584–1594. doi: 10.1039/C5MT00168D.10.1039/C5MT00168D26463441
- Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: Critical review. Frontiers Chem., 5, 78. doi: 10.3389/fchem.2017.00078.10.3389/fchem.2017.00078564347429075626
- Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L., Adam, V. (2017). Nano-particles based on essential metals and their phytotoxicity. J. Nanobiotechnol., 15, 33. doi: 10.1186/s12951-017-0268-3.10.1186/s12951-017-0268-3540688228446250
- Servin, A. D., White, J. C. (2016). Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact, 1, 9–12.10.1016/j.impact.2015.12.002
- Shah, B. R., Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Rev. Aquacult., 12 (2), 925–942.10.1111/raq.12356
- Shahcheraghi, N., Golchin, H., Sadri, Z., Tabari, Y., Borhanifar, F., Makani, S. (2022). Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech., 12 (3), 1–24.10.1007/s13205-021-03108-9882884035186662
- Sheikholeslami, M., Keshteli, A. N., Babazadeh, H. (2020). Nanoparticles favorable effects on performance of thermal storage units. J. Mol. Liquids, 300, 112329.10.1016/j.molliq.2019.112329
- Shilpa, R., Laware, S. (2014). Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. App. Sci., 3 (2), 467–473.
- Sillen, W. M. A., Thijs, S., Abbamondi, G. R., Janssen, J., Weyens, N., White, J. C., Vangronsveld, J. (2015). Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol. Biochem., 91, 14–22.10.1016/j.soilbio.2015.08.019
- Tang, Y., He, R., Zhao, J., Nie, G., Xu, L., Xing. B. (2016). Oxidative stressinduced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ. Pollut., 212, 605–614.10.1016/j.envpol.2016.03.01927016889
- Tarrahi, R., Khataee, A., Movafeghi, A., Rezanejad, F. (2018). Toxicity of ZnSe nanoparticles to Lemna minor: Evaluation of biological responses. J. Environ Manag., 226, 298–307. doi: 10.1016/j.jenvman.2018.08.036.10.1016/j.jenvman.2018.08.03630125809
- Tolaymat, T., El Badawy, A., Sequeira, R., Genaidy, A. (2015). A system-of-systems approach as a broad and integrated paradigm for sustainable engineered nanomaterials. Sci. Total Environ., 511, 595–607.10.1016/j.scitotenv.2014.09.02925590540
- Torney, F., Trewyn, B. G., Lin, V. S., Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2, 295–300.10.1038/nnano.2007.10818654287
- Tortella, G. R., Rubilar, O., Durán, N., Diez, M. C., Martínez, M., Parada, J., Seabra, A. B. (2020). Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater., 390, 121974.10.1016/j.jhazmat.2019.12197432062374
- Tripathi, D. K., Singh S., Singh S., Pandey R., Singh V. P., Sharma N. C., Prasad S. M., Dubey N. K., Chauhan D. K. (2017). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem., 110, 2–12.10.1016/j.plaphy.2016.07.03027601425
- Wang, L., Hu, C., Shao, L. (2017). The anti-microbial activity of nano-particles: Present situation and prospects for the future. Int. J. Nanomed., 12, 1227–1249. doi: 10.2147/IJN.S121956.10.2147/IJN.S121956531726928243086
- Yang, A., Wu, J., Deng, C., Wang, T., Bian, P. (2018). Genotoxicity of zinc oxide nanoparticles in plants demonstrated using transgenic Arabidopsis thaliana. Bull. Environ. Contam. Toxicol., 101 (4), 514–520. doi: 10.1007/s00128-018-2420-7.10.1007/s00128-018-2420-730128726
- Yang, J., Cao, W., Rui, Y. (2017). Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. J. Plant Interact., 12 (1), 158–169.10.1080/17429145.2017.1310944
- Zhang, P. (2014). Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). J. Zhejiang Univ. SCIENCE A, 15 (8), 662–670.10.1631/jzus.A1400114
- Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Servin, A. D., Hong, J., Niu, G., Peralta-Videa, J. R., Duarte-Gardea, M., Gardea-Torresdey, J. L. (2013). Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. J. Agric. Food Chem., 61 (49), 11945–11951.10.1021/jf404328e24245665
- Zhao, X., Meng, Z., Wang, Y., Chen, W., Sun, C., Cui, B., Cui, J., Yu, M., Zeng, Z., Guo, S., Luo, D., Cheng, J. Q., Zhang, R., Cui, H. (2017). Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants, 3, 956–964.10.1038/s41477-017-0063-z29180813