Have a personal or library account? Click to login

Effect of Bacteriophage-Derived Double Stranded RNA on Rat Peritoneal Macrophages and Microglia in Normoxia and Hypoxia

Open Access
|Nov 2021

References

  1. Bennett, M. L., Bennett, F. C. (2020). The influence of environment and origin on brain resident macrophages and implications for therapy. Nat. Neurosci. 23 (2), 157–166.10.1038/s41593-019-0545-631792468
  2. Biswas, S. K., Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 11 (10), 889–896.10.1038/ni.193720856220
  3. Burke, B., Lewis, C. E., (2002). The Macrophage. 2nd Edition. Oxford University Press. 680 pp.
  4. Caputa, G., Castoldi, A., Pearce, E. J. (2019). Metabolic adaptations of tissue-resident immune cells. Nat. Immunol., 20 (7), 793–801.10.1038/s41590-019-0407-031213715
  5. Cherry, J. D., Olschowka, J. A., O’Banion, M. K. (2014). Are “resting” microglia more “m2”? Front Immunol., 5, 594.
  6. Colgan, S. P., Furuta, G. T., Taylor, C. T. (2020). Hypoxia and innate immunity: Keeping up with the HIFsters. Annu. Rev. Immunol., 38, 341–363.10.1146/annurev-immunol-100819-121537792452831961750
  7. Corraliza, I. M., Soler, G., Eichmann, K., Modolell, M. (1995). Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem. Biophys. Res. Commun., 206 (2), 667–673.10.1006/bbrc.1995.10947530004
  8. Dahdah, A., Gautier, G., Attout, T., Fiore, F., Lebourdais, E., Msallam, R., Daėron, M., Monteiro, R. C., Benhamou, M., Charles, N., Davoust, J., Blank, U., Malissen, B., Launay, P. (2014). Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J. Clin. Invest., 124 (10), 4577–4589.10.1172/JCI75212419100225180604
  9. De Palma, M., Biziato, D., Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 17 (8), 457–474.10.1038/nrc.2017.5128706266
  10. Filiano, A. J., Gadani, S. P., Kipnis, J. (2015). Interactions of innate and adaptive immunity in brain development and function. Brain Res., 1617 18–27.10.1016/j.brainres.2014.07.050432067825110235
  11. Frank, M. G., Wieseler-Frank, J. L., Watkins, L. R., Maier, S. F. (2006). Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: Immunophenotypic and functional characteristics. J. Neurosci. Methods, 151 (2), 121–130.10.1016/j.jneumeth.2005.06.02616125247
  12. Gordon, S., Martinez, F. O. (2010). Alternative activation of macrophages: Mechanism and functions. Immunity, 32 (5), 593–604.10.1016/j.immuni.2010.05.00720510870
  13. Guo, Y., Hong, W., Wang, X., Zhang, P., Körner, H., Tu, J., Wei, W. (2019). MicroRNAs in mcroglia: How do microRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol. Neurosci., 12, 125.
  14. Hashimoto, D., Chow, A., Noizat, C., Teo, P., Beasley, M. B., Leboeuf, M., Becker, C. D., See, P., Price, J., Lucas, D., et al. (2013). Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity, 38 (4), 792–804.10.1016/j.immuni.2013.04.004385340623601688
  15. Jantsch, J., Schödel, J. (2015). Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology, 220 (2), 305–314.10.1016/j.imbio.2014.09.00925439732
  16. Ke, X., Chen, C., Song, Y., Cai, Q., Li, J., Tang, Y., Han, X., Qu, W., Chen, A., Wang, H., Xu, G., Liu, D. (2019). Hypoxia modifies the polarization of macrophages and their inflammatory microenvironment, and inhibits malignant behavior in cancer cells. Oncol. Lett., 18 (6), 5871–5878.10.3892/ol.2019.10956686514931788060
  17. Kumar, V., Bhat, E. b. K. H. (2019). Macrophages: The potent immuno-regulatory innate immune cells. In: Bhat, K. H. (Ed.). Macrophage Activation: Biology and Disease. https://www.intechopen.com/chapters/68185 (accessed 15.09.2021).
  18. Lee, J. Y., Han, S. H., Park, M. H., Song, I. S., Choi, M. K., Yu, E., Park, C. M., Kim, H. J., Kim, S. H., Schuchman, E. H., Jin, H. K., Bae, J. S. (2020). N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer’s disease. Nat. Commun., 11 (1), 2358.10.1038/s41467-020-16080-4721787732398649
  19. Liu, T., Liu, F., Peng, L. W., Chang, L., Jiang, Y. M. (2018). The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol. Res., 26 (5), 817–826.10.3727/096504017X15130753659625784475529237519
  20. Loža, V., Feldmane, G. (1996). Biomodulatory functions of double-stranded ribonucleic acids. Acta Med. Balt., 3 12–17.
  21. Loža, V., Pilmane, M., Brūvere, R., Feldmane, G., Volrāte, Ā., Ose, V., Sundler, F. (1996). Double-stranded ribonucleic acids in cells during induced differentiation. Acta Med. Balt., 3 22–30.
  22. Melief, J., Sneeboer, M. A., Litjens, M., Ormel, P. R., Palmen, S. J., Huitinga, I., Kahn, R. S., Hol, E. M., de Witte, L. D. (2016). Characterizing primary human microglia: A comparative study with myeloid subsets and culture models. Glia, 64 (11), 1857–1868.10.1002/glia.2302327442614
  23. Morris, S. M., Jr. (2007). Arginine metabolism: Boundaries of our knowledge. J. Nutr., 137 (6 Suppl 2), 1602s–1609s.10.1093/jn/137.6.1602S17513435
  24. Mosser, D. M., Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 8 (12), 958–969.10.1038/nri2448272499119029990
  25. Munder, M. (2009). Arginase: An emerging key player in the mammalian immune system. Brit. J. Pharmacol., 158 (3), 638–651.10.1111/j.1476-5381.2009.00291.x276558619764983
  26. Okabe, Y., Medzhitov, R. (2016). Tissue biology perspective on macrophages. Nat. Immunol., 17 (1), 9–17.10.1038/ni.332026681457
  27. Pjanova, D., Mandrika, L., Petrovska, R., Vaivode, K., Donina, S. (2019). Comparison of the effects of bacteriophage-derived dsRNA and poly(I:C) on ex vivo cultivated peripheral blood mononuclear cells. Immunol. Lett., 212, 114–119.10.1016/j.imlet.2019.06.010
  28. Régnier-Vigouroux, A. (2003). The mannose receptor in the brain. Int. Rev. Cytol., 226, 321–342.10.1016/S0074-7696(03)01006-4
  29. Reiner, N. E. (2009). Methods in molecular biology. Macrophages and dendritic cells. Methods and protocols. Preface. Methods Mol. Biol., 531, v-vi.10.1007/978-1-59745-396-719422172
  30. Sica, A., Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 122 (3), 787–795.10.1172/JCI59643328722322378047
  31. Skivka, L., Fedorchuk, O., Rudyk, M., Pozur, V., Khranovska, N., Grom, M. Y., Nowicky, J. (2013). Antineoplastic drug NSC631570 modulates functions of hypoxic macrophages. Cytol. Genet., 47 (5), 318–328.10.3103/S0095452713050095
  32. Suresh, R., Mosser, D. M. (2013). Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv. Physiol. Educ., 37 (4), 284–291.10.1152/advan.00058.2013408909224292903
  33. Taylor, C. T., Colgan, S. P. (2017). Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol., 17 (12), 774–785.10.1038/nri.2017.103579908128972206
  34. Taylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H. H., Brown, G. D., Gordon, S. (2005). Macrophage receptors and immune recognition. Annu. Rev. Immunol., 23 901–944.10.1146/annurev.immunol.23.021704.11581615771589
  35. Theret, M., Mounier, R., Rossi, F. (2019). The origins and non-canonical functions of macrophages in development and regeneration. Development, 146 (9), dev156000.10.1242/dev.15600031048317
  36. Veinalde, R., Petrovska, R., Brûvere, R., Feldmane, G., Pjanova, D. (2014). Ex vivo cytokine production in peripheral blood mononuclear cells after their stimulation with dsRNA of natural origin. Biotechnol. Appl. Biochem., 61 (1), 65–73.10.1002/bab.114323941496
  37. Vercammen, E., Staal, J., Beyaert, R. (2008). Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin. Microbiol. Rev., 21 (1), 13–25.10.1128/CMR.00022-07222384318202435
  38. Wang, L. X., Zhang, S. X., Wu, H. J., Rong, X. L., Guo, J. (2019). M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol., 106 (2), 345–358.10.1002/JLB.3RU1018-378RR737974530576000
  39. Wu, Z., Zhang, Z., Lei, Z., Lei, P. (2019). CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev., 48, 24–31.10.1016/j.cytogfr.2019.06.00331296363
  40. Yang, Z., Ming, X. F. (2014). Functions of arginase isoforms in macrophage inflammatory responses: Impact on cardiovascular diseases and metabolic disorders. Front Immunol., 5, 533.10.3389/fimmu.2014.00533420988725386179
  41. Zhao, Y. L., Tian, P. X., Han, F., Zheng, J., Xia, X. X., Xue, W. J., Ding, X. M., Ding, C. G. (2017). Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow. J. Zhejiang Univ. Sci. B., 18 (12), 1055–1063.10.1631/jzus.B1700003574228829204985
DOI: https://doi.org/10.2478/prolas-2021-0050 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 343 - 349
Submitted on: Apr 17, 2021
Accepted on: May 20, 2021
Published on: Nov 15, 2021
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Dace Pjanova, Yevheniia Hurmach, Mariia Rudyk, Natalia Khranovska, Oksana Skachkova, Irina Verhovcova, Larysa Skivka, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.