References
- Anonymous (2005). International Organization of Standartization. Soil quality – Determination of pH, ISO 10390:2005. International stage code: 90.93 (2010-01-05).
- Anonymous (2019). RStudio: Integrated Development for R. RStudio Team. http://www.rstudio.com/ (accessed 10.10.2020).
- Auclerc, A., Le Moine, J. M., Hatton, P. J., Bird, J. A., Nadelhoffer, J. (2019). Decadal post-fire succession of soil invertebrate communities is dependent on the soil surface properties in a northern temperate forest. Sci. Total Environ., 647, 1058–1068.10.1016/j.scitotenv.2018.08.041
- Bååth, E., Arnebrant, K. (1993). Microfungi in coniferous forest soil treated with lime or wood ash. Biol. Fertility Soils, 15, 91–95.10.1007/BF00336424
- Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecol. Econ., 64 (2), 269–285.10.1016/j.ecolecon.2007.03.004
- Bengtsson, J. (2002). Disturbance and resilience in soil animal communities. Eur. J. Soil Biol., 38, 119–125.10.1016/S1164-5563(02)01133-0
- Bengtsson, J., Nilsson, G. S., Franc, A., Menozzi, P., (2000). Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol. Manag., 132, 39–50.10.1016/S0378-1127(00)00378-9
- Bormann, B., Homann, P. S., Darbyshire, R. L., Morrissete, B. A. (2008). Intense forest wildfire sharply reduces mineral soil C and N: The first direct evidence. Canad. J. Forest Res., 38 (11), 2771–2783.10.1139/X08-136
- Braun-Blanquet, J. (1964). Pflanzensoziologie, Grundzüge der Vegetationskunde. 3rd edition. Springer-Verlag, Berlin. 865 S. (in German).
- Capinera, J. L. (2006). Encyclopaedia of Entomology. Vol. 2, F – O. Springer, Dordrecht. 1617 pp.
- Cerdà, A. (1999). Parent material and vegetation affect soil erosion in Eastern Spain. Soil Sci. Soc. Amer. J., 63 (2), 362–368.10.2136/sssaj1999.03615995006300020014x
- Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1–10.10.1007/s00442-004-1788-815688212
- Clarke, K. R., Warwick, R. M. (2001). Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd edition. Primer-E Ltd, Plymouth. 176 pp.
- Crossley, D. A., Hansen, R. A. Jr., Lamoncha, K. L. (1997). Response of forest floor microarthropods to a forest regeneration burn at Wine Spring Watershed (southern Appalachians). In: Proceedings of the 1st Biennial North American Forest Ecology Workshop, 24–27 June 1997, Raleigh, North Carolina. Institute of Ecology, University of Georgia, Raleigh, pp. 1–15.
- Cruz-Paredes, C., Wallander, H., Kj¸ller, R., Rousk, J. (2017). Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil Biol. Biochem., 112, 153–164.10.1016/j.soilbio.2017.05.004
- Dhooria, M. S. (2016). Fundamentals of Applied Acarology. Springer Nature, Singapore. 470 pp.10.1007/978-981-10-1594-6
- Dindal, D. L. (1990). Soil Biology Guide. University of New Hapshive, Durham. 1980 pp.
- Donis, J., Kitenberga, M., Snepsts, G., Matisons, R., Zarins, J., Jansons, A. (2017). The forest fire regime in Latvia during 1922–2014. Silva Fennica, 51 (5), DOI: 10.14214/sf.774610.14214/sf.7746
- Dunger, W., Fiedler, H. J. (1997). Methoden der Bodenbiologie. Gustav Fischer Verlag Jena, Villengang. 539 S.
- Eisenbeis, G. (2006). Biology of Soil Invertebrates. In: Konig, H., Varma A. (eds.). Intestinal Microorganisms of Termites and other Invertebrates. Springer-Verlag, Berlin, pp. 3–53.10.1007/3-540-28185-1_1
- Engelmann, H. D. (1978). Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia, 18, 378–380.
- Fowler, J., Cohen, L., Jarvis, P. (1998). Practical Statistics for Field Biology. Second Edition. John Wiley & Sons Ltd., Chichester. 254 pp.
- George, P. B. L., Keith, A. M., Creer, S., Barrett, G. L., Lebron, I., Emmet, B. A., Robinson, D. A., Jones, D. L. (2017). Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biol. Biochem., 115, 537–546.10.1016/j.soilbio.2017.09.022
- Gongalsky, K. B., Malmström, A., Zaitsev, A. S., Shakhab, S. V., Bengtsson, J., Persson, T. (2012). Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Appl. Soil Ecol., 59, 73–86.10.1016/j.apsoil.2012.03.017
- Grabczyńska, O., Olejniczak, I., Prædecka, A., Russel, S. (2009). Short-term effects of prescribed forest fire on soil mites (Acari). Polish J. Ecol., 57 (4), 805–809.
- Hågvar, S. (1987). Why do collemboles and mites react to changes in soil acidity? Entomologiske Meddelelser, 55, 115–119.
- Hågvar, S., Amundsen, T. (1981). Effects of liming and artificial acid rain on the mite (Acari) fauna in coniferous forest. Oikos, 37 (1), 7–20.10.2307/3544068
- Hammen, L. (1980). Glossary of Acarological Terminology. Dr. W. Junk Publishers, Hague. 284 pp.
- Hansen, M., Bang-Andreasen, T., S¸rensen, H., Ingerslev, M. (2017). Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. Forest Ecol. Manag., 406, 274–280.10.1016/j.foreco.2017.09.069
- Henig-Sever, N., Poliakov, D., Broza, M. (2001). A novel method for estimation of wildfire intensity based on ash pH and soil microarthropod community. Pedobiologia, 45, 98–106.10.1078/0031-4056-00072
- Hutchins, M. W., Reynolds, B. C., Patch, S. P. (2011). Prescribed fire and the abundance of soil microarthropods in Northeast Georgia. Southeastern Naturalist, 10 (3), 489–500.10.1656/058.010.0308
- Johnstone, J. F., Chapin, F. S. (2006). Effects of soil burn severity on post–fire tree recruitment in boreal forest. Ecosystems, 9, 14–31.10.1007/s10021-004-0042-x
- Kagainis. U., Cera I., Juceviča E., Karpa A., Salmane I., Saulītis J., Spuņģis V., Telnov D., Melecis V., Jankevica L. (2020). The importance and potential value of a regional midsize arthropod collection: An example of IBULC. Int. J. Inclusive Museum, 13 (3), 45–77.10.18848/1835-2014/CGP/v13i03/45-77
- Kamczyc, J., Urbanowski, C., Pers-Kamczys, E. (2017). Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire. Exper. Appl. Acarology, 72, 145–160.10.1007/s10493-017-0148-4548684228634718
- Kim, J. W., Jung, C. (2008). Abundance of soil microarthropods associated with forest fire severity in Samcheok, Korea. J. Asia–Pacific Entomol., 11, 77–81.10.1016/j.aspen.2008.05.003
- Kim, J., Jung, C. (2013). Ecological resilience of soil oribatid mite communities after the fire disturbance. J. Ecol. Environ., 36 (2), 117–123.10.5141/ecoenv.2013.015
- Kirby, K. J., Watkins, C. (2015). Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes. CABI publishing, Oxfordshire. 363 pp.10.1079/9781780643373.0000
- Krantz, G. W., Walter, D. E. (2009). A Manual of Acarology. Third Edition. Texas Tech University Press, Texas. 807 pp.
- Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115–129.10.1007/BF02289694
- Kudryasheva, I. V., Laskova, L. M. (2002). Oribatid mites (Acariformes, Oribatei) as an index of postpyrogenous changes in podzol and peat soils of boreal forests. Biol. Bull., 29 (1), 92–99.10.1023/A:1013254221694
- Larroulet, M. S., Hepper, E. N., Alvarez Redondo, M. P., Belmonte, V., Urioste, A. M. (2016). The Caldenal ecosystem: Effects of prescribed fire on soil chemical properties. Arid Land Res. Manag., 30 (1), 105–119.10.1080/15324982.2015.1046198
- Lepš, J., Šmilauer, P. (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge. 284 pp.10.1017/CBO9780511615146
- Liiri, M., Haimi, J., Settälä, H. (2002). Community composition of soil microarthropods of acid forest soils as affected by wood ash application. Pedobiologia, 46, 108–124.10.1078/0031-4056-00118
- Lóšková, J., Luptáčik, P., Miklisová, D., Kováč, L. (2013). The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). Eur. J. Soil Biol., 55, 131–138.10.1016/j.ejsobi.2013.01.001
- Malmström, A. (2006). Effects of wildfire and prescribed burning on soil fauna in boreal coniferous forests. PhD dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden. 35 pp.
- Malmström, A. (2008). Temperature tolerance in soil microarthropods: Simulation of forest-fire heating in the laboratory. Pedobiologia, 51, 419–426.10.1016/j.pedobi.2008.01.001
- Malmström, A. (2010). The importance of measuring fire severity: Evidence from microarthropod studies. Forest Ecol. Manag., 260, 62–70.10.1016/j.foreco.2010.04.001
- McCune, B., Mefford, M. J. (1999). PC-ORD. Multivariate Analysis of Ecological Data. Version 4.0. MjM Software, Oregon. 237 pp.
- Migliorini, M., Pigino, G., Avanzati, A. M., Salomone, N., Bernini, F. (2004). Experimental fires in a Mediterranean environment: Effects on Oribatid mite communities. Phytophaga, 14, 271–277.
- Murvanidze, M., Arabuli, T., Kvavadze, E. R., Mumladze, L. (2008). The effect of fire disturbance on oribatid mite communities. In: Integrative Acarology. Proceedings of the 6th European Congress. 21–25 July, 2008, Montpellier. European Association of Acarologists, Montpellier, pp. 216–221.
- Nakamura, Y. N., Gotoh, T. (2009). Comparative ultrastructural observation of the cuticle and muscle of an enchytraeid (Enchytraeus japonensis) and an oribatid species (Tectocepheus velatus) using transmission electron microscopy. J. Faculty Agricult. Kyushu Univ., 54 (1), 97–101.10.5109/14044
- Nardi, J. B. (2007). Life in the Soil. The University of Chicago Press, Chicago. 293 pp.10.7208/chicago/9780226568539.001.0001
- Nielsen, U. N., Osler, G. H. R., Campbell, C. D., Neilson, R., Burslem, D. F. R. P., van der Wal, R. (2010). The enigma of soil animal species diversity revisited: The role of small-scale heterogeneity. PloS ONE, 5 (7), e11567.10.1371/journal.pone.0011567290349220644639
- Olejniczak, I., Górska, E. B., Prædecka, A., Hewelke, E., Gozdowski, D., Korc, M., Panek, E., Tyburski, L., Skawińska, M., Oktaba, M., Boniecki,, P., Kondras M., Oktaba, L. (2019). Selected biological properties of the soil in a burnt-out area under old pine trees three years after a fire. Middle Pomeranian Scientific Society of the Environment Protection, 21, 1279–1293.
- Parisi, V., Menta, C., Gardi, C., Jacomini, C., Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agricult. Ecosyst. Environ., 105, 323–333.10.1016/j.agee.2004.02.002
- Parsons, A., Robichaud, P. R., Lewis, S. A., Napper, C., Clark, J. T. (2010). Field Guide for Mapping Post-Fre Soil Burn Severity. United States Department of Agriculture, Rocky Mountains Reasearch Station. 49 pp.
- Parviainen, J. (1996). The impact of fire on Finnish forests in the past and today. Silva Fennica, 30 (2–3), 353–359.10.1007/978-94-015-8737-2_4
- Pastro L. A., Dickman, C. R., Letnic, M. (2011). Burning for biodiversity or burning biodiversity? Prescribed burn vs. wildfire impacts on plants, lizards, and mammals. Ecol. Appl., 21 (8), 3238–3253.
- Perdomo, G., Evans A., Maraun, M., Sunnucks, P., Thompson, R. (2012). Mouthpart morphology and trophic position of microarthropods from soils and mosses are strongly correlated. Soil Biol. Biochem., 53, 56–63.10.1016/j.soilbio.2012.05.002
- Rove, I. (Ed.) (2008). Nature Management Plan for Protected Landscape Area “Ādaži” [Aizsargājamo ainavu apvidus “Ādaži” dabas aizsardzības plāns]. Latvijas Dabas fonds, Rīga. 122 lpp. (in Latvian).
- Ryan, K. C. (2002). Dynamic interactions between forest structure and fire behavious in boreal ecosystems. Silva Fennica, 36 (1), 13–39.
- Saifutdinov, R. A., Gongalsky, K. B., Zaitsev, A. S. (2018). Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma, 332, 173–179.10.1016/j.geoderma.2017.07.021
- Scheinost, A. C., Sinowski, W., Auerswald, K. (1997). Regionalization of soil buffering functions: A new concept applied to K/Ca exchange curves. Adv. GeoEcol., 30, 23–38.
- Schimmel, J., Granström, A. (1996). Fire severity and vegetation response in the boreal Swedish forest. Ecology, 77 (5), 1436–1450.10.2307/2265541
- Schneider, K., Maraun, M. (2005). Feeding preferences among dark pigmented fungi (“Damatiacea”) indicate trophic niche differentiation of oribatid mites. Pedobiologia, 49, 61–67.10.1016/j.pedobi.2004.07.010
- Southwood, T. R. E., Henderson, P. A. (2000). Ecological Methods. Third edition. Blackwell Science Ltd., London. 575 pp.
- Stamou, G. P., Asikidis, M. D., Argyropoulou, M. D., Sgardelis, S. P. (1993). Ecological time versus standard clock time: The asymmetry of phenologies and the life history strategies of some soil arthropods from Mediterranean ecosystems. Oikos, 66 (1), 27–35.10.2307/3545191
- Stefaniak, O., Seniczak, S. (1981). The effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract. Pedobiologia, 21, 202–210.
- Tyurin, I. V. (1951). Analytical procedure for a comparative study of soil humus. Scientific Works of V.V. Dokuchaev Soil Science Institute [Тюрин, И. В. К методике анализа для сравнительного изучения состава почвенного перегноя или гумуса. Ттр. Почв, ин-ша им В.В. Докучаева], 33a, 5–21.
- Villegas, J. C., Breshears, D. D., Zou, C. B., Law, D. J. (2010). Ecohydrological controls of soil evaporation in deciduous drylands: How the hierarchical effects of litter, patch and vegetation mosaic cover interact with phenology and season. J. Arid Environ., 74 (5), 595–602.10.1016/j.jaridenv.2009.09.028
- Walter, D. E., Proctor, H. C. (1999). Mites: Ecology, Evolution & Behavior. CABI publishing, New York. 322 pp.
- Wehner, K., Norton, R. A., Blüthgen, N., Heethoff, M.. (2016). Specialization of oribatid mites to forest microhabitats — the enigmatic role of litter. Ecosphere, 7 (3), e01336.10.1002/ecs2.1336
- Weigmann, G. (2006). Hornmilben (Oribatida). Die Tierwelt Deutshclands, Bd. 76. Goecke & Evers, Keltern. 520 S. (in German).
- Wikars, L. O., Schimmel, J., (2001). Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecol. Manag., 141, 189–200.10.1016/S0378-1127(00)00328-5
- Zaitsev, A. S., Gongalsky, K. B., Malmström, A., Persson, T., Bengtsson, J. (2016). Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol., 98, 261–271.10.1016/j.apsoil.2015.10.012
- Zaitsev, A. S., Gongalsky, K. B., Persson, T., Bengtsson, J. (2014). Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Appl. Soil Ecol., 83, 101–108.10.1016/j.apsoil.2014.01.007
- Zaitsev A. S., van Straalen, N. M. (2001). Species diversity and metal accumulation in oribatid mites (Acari, Oribatida) of forests affected by a metal-lurgical plant. Pedobiologia, 45, 467–479.10.1078/0031-4056-00100