Have a personal or library account? Click to login
Immediate Effects of Prescribed Burning on Soil Mite (Acari: Oribatida) Communities in a Scots Pine (Pinus Sylvestris) Forest, Latvia Cover

Immediate Effects of Prescribed Burning on Soil Mite (Acari: Oribatida) Communities in a Scots Pine (Pinus Sylvestris) Forest, Latvia

Open Access
|Jul 2021

References

  1. Anonymous (2005). International Organization of Standartization. Soil quality – Determination of pH, ISO 10390:2005. International stage code: 90.93 (2010-01-05).
  2. Anonymous (2019). RStudio: Integrated Development for R. RStudio Team. http://www.rstudio.com/ (accessed 10.10.2020).
  3. Auclerc, A., Le Moine, J. M., Hatton, P. J., Bird, J. A., Nadelhoffer, J. (2019). Decadal post-fire succession of soil invertebrate communities is dependent on the soil surface properties in a northern temperate forest. Sci. Total Environ., 647, 1058–1068.10.1016/j.scitotenv.2018.08.041
  4. Bååth, E., Arnebrant, K. (1993). Microfungi in coniferous forest soil treated with lime or wood ash. Biol. Fertility Soils, 15, 91–95.10.1007/BF00336424
  5. Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecol. Econ., 64 (2), 269–285.10.1016/j.ecolecon.2007.03.004
  6. Bengtsson, J. (2002). Disturbance and resilience in soil animal communities. Eur. J. Soil Biol., 38, 119–125.10.1016/S1164-5563(02)01133-0
  7. Bengtsson, J., Nilsson, G. S., Franc, A., Menozzi, P., (2000). Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol. Manag., 132, 39–50.10.1016/S0378-1127(00)00378-9
  8. Bormann, B., Homann, P. S., Darbyshire, R. L., Morrissete, B. A. (2008). Intense forest wildfire sharply reduces mineral soil C and N: The first direct evidence. Canad. J. Forest Res., 38 (11), 2771–2783.10.1139/X08-136
  9. Braun-Blanquet, J. (1964). Pflanzensoziologie, Grundzüge der Vegetationskunde. 3rd edition. Springer-Verlag, Berlin. 865 S. (in German).
  10. Capinera, J. L. (2006). Encyclopaedia of Entomology. Vol. 2, F – O. Springer, Dordrecht. 1617 pp.
  11. Cerdà, A. (1999). Parent material and vegetation affect soil erosion in Eastern Spain. Soil Sci. Soc. Amer. J., 63 (2), 362–368.10.2136/sssaj1999.03615995006300020014x
  12. Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1–10.10.1007/s00442-004-1788-815688212
  13. Clarke, K. R., Warwick, R. M. (2001). Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd edition. Primer-E Ltd, Plymouth. 176 pp.
  14. Crossley, D. A., Hansen, R. A. Jr., Lamoncha, K. L. (1997). Response of forest floor microarthropods to a forest regeneration burn at Wine Spring Watershed (southern Appalachians). In: Proceedings of the 1st Biennial North American Forest Ecology Workshop, 24–27 June 1997, Raleigh, North Carolina. Institute of Ecology, University of Georgia, Raleigh, pp. 1–15.
  15. Cruz-Paredes, C., Wallander, H., Kj¸ller, R., Rousk, J. (2017). Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil Biol. Biochem., 112, 153–164.10.1016/j.soilbio.2017.05.004
  16. Dhooria, M. S. (2016). Fundamentals of Applied Acarology. Springer Nature, Singapore. 470 pp.10.1007/978-981-10-1594-6
  17. Dindal, D. L. (1990). Soil Biology Guide. University of New Hapshive, Durham. 1980 pp.
  18. Donis, J., Kitenberga, M., Snepsts, G., Matisons, R., Zarins, J., Jansons, A. (2017). The forest fire regime in Latvia during 1922–2014. Silva Fennica, 51 (5), DOI: 10.14214/sf.774610.14214/sf.7746
  19. Dunger, W., Fiedler, H. J. (1997). Methoden der Bodenbiologie. Gustav Fischer Verlag Jena, Villengang. 539 S.
  20. Eisenbeis, G. (2006). Biology of Soil Invertebrates. In: Konig, H., Varma A. (eds.). Intestinal Microorganisms of Termites and other Invertebrates. Springer-Verlag, Berlin, pp. 3–53.10.1007/3-540-28185-1_1
  21. Engelmann, H. D. (1978). Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia, 18, 378–380.
  22. Fowler, J., Cohen, L., Jarvis, P. (1998). Practical Statistics for Field Biology. Second Edition. John Wiley & Sons Ltd., Chichester. 254 pp.
  23. George, P. B. L., Keith, A. M., Creer, S., Barrett, G. L., Lebron, I., Emmet, B. A., Robinson, D. A., Jones, D. L. (2017). Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biol. Biochem., 115, 537–546.10.1016/j.soilbio.2017.09.022
  24. Gongalsky, K. B., Malmström, A., Zaitsev, A. S., Shakhab, S. V., Bengtsson, J., Persson, T. (2012). Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Appl. Soil Ecol., 59, 73–86.10.1016/j.apsoil.2012.03.017
  25. Grabczyńska, O., Olejniczak, I., Prædecka, A., Russel, S. (2009). Short-term effects of prescribed forest fire on soil mites (Acari). Polish J. Ecol., 57 (4), 805–809.
  26. Hågvar, S. (1987). Why do collemboles and mites react to changes in soil acidity? Entomologiske Meddelelser, 55, 115–119.
  27. Hågvar, S., Amundsen, T. (1981). Effects of liming and artificial acid rain on the mite (Acari) fauna in coniferous forest. Oikos, 37 (1), 7–20.10.2307/3544068
  28. Hammen, L. (1980). Glossary of Acarological Terminology. Dr. W. Junk Publishers, Hague. 284 pp.
  29. Hansen, M., Bang-Andreasen, T., S¸rensen, H., Ingerslev, M. (2017). Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. Forest Ecol. Manag., 406, 274–280.10.1016/j.foreco.2017.09.069
  30. Henig-Sever, N., Poliakov, D., Broza, M. (2001). A novel method for estimation of wildfire intensity based on ash pH and soil microarthropod community. Pedobiologia, 45, 98–106.10.1078/0031-4056-00072
  31. Hutchins, M. W., Reynolds, B. C., Patch, S. P. (2011). Prescribed fire and the abundance of soil microarthropods in Northeast Georgia. Southeastern Naturalist, 10 (3), 489–500.10.1656/058.010.0308
  32. Johnstone, J. F., Chapin, F. S. (2006). Effects of soil burn severity on post–fire tree recruitment in boreal forest. Ecosystems, 9, 14–31.10.1007/s10021-004-0042-x
  33. Kagainis. U., Cera I., Juceviča E., Karpa A., Salmane I., Saulītis J., Spuņģis V., Telnov D., Melecis V., Jankevica L. (2020). The importance and potential value of a regional midsize arthropod collection: An example of IBULC. Int. J. Inclusive Museum, 13 (3), 45–77.10.18848/1835-2014/CGP/v13i03/45-77
  34. Kamczyc, J., Urbanowski, C., Pers-Kamczys, E. (2017). Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire. Exper. Appl. Acarology, 72, 145–160.10.1007/s10493-017-0148-4548684228634718
  35. Kim, J. W., Jung, C. (2008). Abundance of soil microarthropods associated with forest fire severity in Samcheok, Korea. J. Asia–Pacific Entomol., 11, 77–81.10.1016/j.aspen.2008.05.003
  36. Kim, J., Jung, C. (2013). Ecological resilience of soil oribatid mite communities after the fire disturbance. J. Ecol. Environ., 36 (2), 117–123.10.5141/ecoenv.2013.015
  37. Kirby, K. J., Watkins, C. (2015). Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes. CABI publishing, Oxfordshire. 363 pp.10.1079/9781780643373.0000
  38. Krantz, G. W., Walter, D. E. (2009). A Manual of Acarology. Third Edition. Texas Tech University Press, Texas. 807 pp.
  39. Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115–129.10.1007/BF02289694
  40. Kudryasheva, I. V., Laskova, L. M. (2002). Oribatid mites (Acariformes, Oribatei) as an index of postpyrogenous changes in podzol and peat soils of boreal forests. Biol. Bull., 29 (1), 92–99.10.1023/A:1013254221694
  41. Larroulet, M. S., Hepper, E. N., Alvarez Redondo, M. P., Belmonte, V., Urioste, A. M. (2016). The Caldenal ecosystem: Effects of prescribed fire on soil chemical properties. Arid Land Res. Manag., 30 (1), 105–119.10.1080/15324982.2015.1046198
  42. Lepš, J., Šmilauer, P. (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge. 284 pp.10.1017/CBO9780511615146
  43. Liiri, M., Haimi, J., Settälä, H. (2002). Community composition of soil microarthropods of acid forest soils as affected by wood ash application. Pedobiologia, 46, 108–124.10.1078/0031-4056-00118
  44. Lóšková, J., Luptáčik, P., Miklisová, D., Kováč, L. (2013). The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). Eur. J. Soil Biol., 55, 131–138.10.1016/j.ejsobi.2013.01.001
  45. Malmström, A. (2006). Effects of wildfire and prescribed burning on soil fauna in boreal coniferous forests. PhD dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden. 35 pp.
  46. Malmström, A. (2008). Temperature tolerance in soil microarthropods: Simulation of forest-fire heating in the laboratory. Pedobiologia, 51, 419–426.10.1016/j.pedobi.2008.01.001
  47. Malmström, A. (2010). The importance of measuring fire severity: Evidence from microarthropod studies. Forest Ecol. Manag., 260, 62–70.10.1016/j.foreco.2010.04.001
  48. McCune, B., Mefford, M. J. (1999). PC-ORD. Multivariate Analysis of Ecological Data. Version 4.0. MjM Software, Oregon. 237 pp.
  49. Migliorini, M., Pigino, G., Avanzati, A. M., Salomone, N., Bernini, F. (2004). Experimental fires in a Mediterranean environment: Effects on Oribatid mite communities. Phytophaga, 14, 271–277.
  50. Murvanidze, M., Arabuli, T., Kvavadze, E. R., Mumladze, L. (2008). The effect of fire disturbance on oribatid mite communities. In: Integrative Acarology. Proceedings of the 6th European Congress. 21–25 July, 2008, Montpellier. European Association of Acarologists, Montpellier, pp. 216–221.
  51. Nakamura, Y. N., Gotoh, T. (2009). Comparative ultrastructural observation of the cuticle and muscle of an enchytraeid (Enchytraeus japonensis) and an oribatid species (Tectocepheus velatus) using transmission electron microscopy. J. Faculty Agricult. Kyushu Univ., 54 (1), 97–101.10.5109/14044
  52. Nardi, J. B. (2007). Life in the Soil. The University of Chicago Press, Chicago. 293 pp.10.7208/chicago/9780226568539.001.0001
  53. Nielsen, U. N., Osler, G. H. R., Campbell, C. D., Neilson, R., Burslem, D. F. R. P., van der Wal, R. (2010). The enigma of soil animal species diversity revisited: The role of small-scale heterogeneity. PloS ONE, 5 (7), e11567.10.1371/journal.pone.0011567290349220644639
  54. Olejniczak, I., Górska, E. B., Prædecka, A., Hewelke, E., Gozdowski, D., Korc, M., Panek, E., Tyburski, L., Skawińska, M., Oktaba, M., Boniecki,, P., Kondras M., Oktaba, L. (2019). Selected biological properties of the soil in a burnt-out area under old pine trees three years after a fire. Middle Pomeranian Scientific Society of the Environment Protection, 21, 1279–1293.
  55. Parisi, V., Menta, C., Gardi, C., Jacomini, C., Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agricult. Ecosyst. Environ., 105, 323–333.10.1016/j.agee.2004.02.002
  56. Parsons, A., Robichaud, P. R., Lewis, S. A., Napper, C., Clark, J. T. (2010). Field Guide for Mapping Post-Fre Soil Burn Severity. United States Department of Agriculture, Rocky Mountains Reasearch Station. 49 pp.
  57. Parviainen, J. (1996). The impact of fire on Finnish forests in the past and today. Silva Fennica, 30 (2–3), 353–359.10.1007/978-94-015-8737-2_4
  58. Pastro L. A., Dickman, C. R., Letnic, M. (2011). Burning for biodiversity or burning biodiversity? Prescribed burn vs. wildfire impacts on plants, lizards, and mammals. Ecol. Appl., 21 (8), 3238–3253.
  59. Perdomo, G., Evans A., Maraun, M., Sunnucks, P., Thompson, R. (2012). Mouthpart morphology and trophic position of microarthropods from soils and mosses are strongly correlated. Soil Biol. Biochem., 53, 56–63.10.1016/j.soilbio.2012.05.002
  60. Rove, I. (Ed.) (2008). Nature Management Plan for Protected Landscape Area “Ādaži” [Aizsargājamo ainavu apvidus “Ādaži” dabas aizsardzības plāns]. Latvijas Dabas fonds, Rīga. 122 lpp. (in Latvian).
  61. Ryan, K. C. (2002). Dynamic interactions between forest structure and fire behavious in boreal ecosystems. Silva Fennica, 36 (1), 13–39.
  62. Saifutdinov, R. A., Gongalsky, K. B., Zaitsev, A. S. (2018). Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma, 332, 173–179.10.1016/j.geoderma.2017.07.021
  63. Scheinost, A. C., Sinowski, W., Auerswald, K. (1997). Regionalization of soil buffering functions: A new concept applied to K/Ca exchange curves. Adv. GeoEcol., 30, 23–38.
  64. Schimmel, J., Granström, A. (1996). Fire severity and vegetation response in the boreal Swedish forest. Ecology, 77 (5), 1436–1450.10.2307/2265541
  65. Schneider, K., Maraun, M. (2005). Feeding preferences among dark pigmented fungi (“Damatiacea”) indicate trophic niche differentiation of oribatid mites. Pedobiologia, 49, 61–67.10.1016/j.pedobi.2004.07.010
  66. Southwood, T. R. E., Henderson, P. A. (2000). Ecological Methods. Third edition. Blackwell Science Ltd., London. 575 pp.
  67. Stamou, G. P., Asikidis, M. D., Argyropoulou, M. D., Sgardelis, S. P. (1993). Ecological time versus standard clock time: The asymmetry of phenologies and the life history strategies of some soil arthropods from Mediterranean ecosystems. Oikos, 66 (1), 27–35.10.2307/3545191
  68. Stefaniak, O., Seniczak, S. (1981). The effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract. Pedobiologia, 21, 202–210.
  69. Tyurin, I. V. (1951). Analytical procedure for a comparative study of soil humus. Scientific Works of V.V. Dokuchaev Soil Science Institute [Тюрин, И. В. К методике анализа для сравнительного изучения состава почвенного перегноя или гумуса. Ттр. Почв, ин-ша им В.В. Докучаева], 33a, 5–21.
  70. Villegas, J. C., Breshears, D. D., Zou, C. B., Law, D. J. (2010). Ecohydrological controls of soil evaporation in deciduous drylands: How the hierarchical effects of litter, patch and vegetation mosaic cover interact with phenology and season. J. Arid Environ., 74 (5), 595–602.10.1016/j.jaridenv.2009.09.028
  71. Walter, D. E., Proctor, H. C. (1999). Mites: Ecology, Evolution & Behavior. CABI publishing, New York. 322 pp.
  72. Wehner, K., Norton, R. A., Blüthgen, N., Heethoff, M.. (2016). Specialization of oribatid mites to forest microhabitats — the enigmatic role of litter. Ecosphere, 7 (3), e01336.10.1002/ecs2.1336
  73. Weigmann, G. (2006). Hornmilben (Oribatida). Die Tierwelt Deutshclands, Bd. 76. Goecke & Evers, Keltern. 520 S. (in German).
  74. Wikars, L. O., Schimmel, J., (2001). Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecol. Manag., 141, 189–200.10.1016/S0378-1127(00)00328-5
  75. Zaitsev, A. S., Gongalsky, K. B., Malmström, A., Persson, T., Bengtsson, J. (2016). Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol., 98, 261–271.10.1016/j.apsoil.2015.10.012
  76. Zaitsev, A. S., Gongalsky, K. B., Persson, T., Bengtsson, J. (2014). Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Appl. Soil Ecol., 83, 101–108.10.1016/j.apsoil.2014.01.007
  77. Zaitsev A. S., van Straalen, N. M. (2001). Species diversity and metal accumulation in oribatid mites (Acari, Oribatida) of forests affected by a metal-lurgical plant. Pedobiologia, 45, 467–479.10.1078/0031-4056-00100
DOI: https://doi.org/10.2478/prolas-2021-0032 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 220 - 228
Submitted on: Dec 16, 2020
Accepted on: Mar 12, 2021
Published on: Jul 22, 2021
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Rebeka Šķērstiņa, Uģis Kagainis, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.