Have a personal or library account? Click to login
Oxygen Evolution Reaction on a N-Doped Co0.5-Terminated Co3o4 (001) Surface Cover

References

  1. Anonymous (2020). Co3O4 Crystal Structure – SpringerMaterials. Available at: https://materials.springer.com/isp/crystallographic/docs/sd_0311005 (accessed 11.12.20).
  2. Bard, A. J., Faulkner, L. R. (2002). Allen J. Bard and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed. Russ. J. Electrochem., 38, 1364–1365.10.1023/A:1021637209564
  3. Bothra, P., Pati, S. K. (2016). Activity of water oxidation on pure and (Fe, Ni, and Cu)-substituted Co3O4. ACS Energy Lett., 1, 858–862.10.1021/acsenergylett.6b00369
  4. Brillouin, L. (1930). Les électrons libres dans les métaux et le role des réflexions de Bragg. J. Phys. Radium, 1, 377–400.10.1051/jphysrad:01930001011037700
  5. Chen, J., Selloni, A. (2012). Water adsorption and oxidation at the Co3O4 (110) surface. J. Phys. Chem. Lett., 3, 2808–2814.10.1021/jz300994e
  6. Cook, T. R., Dogutan, D. K., Reece, S. Y., Surendranath, Y., Teets, T. S., Nocera, D. G. (2010). Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev., 110, 6474–6502.10.1021/cr100246c21062098
  7. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 57, 1505–1509.10.1103/PhysRevB.57.1505
  8. García-Mota, M., Bajdich, M., Viswanathan, V., Vojvodic, A., Bell, A. T., Nørskov, J. K. (2012). Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C, 116, 21077–21082.10.1021/jp306303y
  9. García-Mota, M., Vojvodic, A., Metiu, H., Man, I. C., Su, H. Y., Rossmeisl, J., Nørskov, J. K. (2011). Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. Chem. Cat. Chem., 3, 1607–1611.10.1002/cctc.201100160
  10. Henkelman, G., Arnaldsson, A., Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Comput. Materi. Sci., 36, 354–360.10.1016/j.commatsci.2005.04.010
  11. Hu, C., Zhang, L., Gong, J. (2019). Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci., 12, 2620–2645.10.1039/C9EE01202H
  12. Kaptagay, G. A., Inerbaev, T. M., Akilbekov, A. T., Koilyk, N. O., Abuova, A. U., Sandibaeva, N. A. (2020). First principles modelling of the N-doped Co0.5 -terminated (0 0 1) Co3O4 surface. Nucl. Instrum. Meth. Phys. Res. Section B, 465, 11–14.10.1016/j.nimb.2019.11.012
  13. Kaptagay, G. A. A., Inerbaev, T. M. M., Mastrikov, Yu. A., Kotomin, E. A. A., Akilbekov, A. T. T. (2015). Water interaction with perfect and fluorine-doped Co3O4 (100) surface. Solid State Ionics, 277, 77–82.10.1016/j.ssi.2015.03.012
  14. Kaptagay, G. A. A., Mastrikov, Y. A. A., Kotomin, E. A. A. (2018). First-principles modelling of N-doped Co3O4. Latv. J. Phys. Techn. Sci., 55, 36–42.
  15. Kohn, W., Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138.10.1103/PhysRev.140.A1133
  16. Kresse, G., Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15–50.10.1016/0927-0256(96)00008-0
  17. Kresse, G., Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758–1775.10.1103/PhysRevB.59.1758
  18. Liao, P., Keith, J. A., Carter, E. A. (2012). Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dop-ants for electrocatalysis. J. Amer. Chem. Soc., 134, 13296–13309.10.1021/ja301567f22788792
  19. Liu, L., Jiang, Z., Fang, L., Xu, H., Zhang, H., Gu, X., Wang, Y. (2017). Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces, 9, 27736–27744.10.1021/acsami.7b0779328758720
  20. Man, I. C., Su, H. Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., N¸rskov, J. K., Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem. Cat. Chem., 3, 1159–1165.10.1002/cctc.201000397
  21. Monkhorst, H. J., Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B., 13, 5188–5192.10.1103/PhysRevB.13.5188
  22. Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., Inoue, M. (2007). Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen. Catalysis Today,120, 145–150.10.1016/j.cattod.2006.07.042
  23. Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868.10.1103/PhysRevLett.77.386510062328
  24. Reier, T., Oezaslan, M., Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysism,2, 1765–1772.10.1021/cs3003098
  25. Valdés, Á., Qu, Z. W., Kroes, G. J., Rossmeisl, J., Nørskov, J. K. (2008). Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C, 112, 9872–9879.10.1021/jp711929d
  26. Wang, Z., Liu, H., Ge, R., Ren, X., Ren, J., Yang, D., Zhang, L., Sun, X. (2018). Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catalysis, 8, 2236–2241.10.1021/acscatal.7b03594
  27. Wang, Z., Xu, W., Chen, X., Peng, Y., Song, Y., Lv, C., Liu, H., Sun, J., Yuan, D., Li, X., Guo, X., Yang, D., Zhang, L. (2019). Defect-rich nitrogen doped Co3O4 /C porous nanocubes Enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater., 29, 1902875.
  28. Xu, L., Wang, Z., Wang, J., Xiao, Z., Huang, X., Liu, Z., Wang, S. (2017). N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 28, 165402.10.1088/1361-6528/aa638128319036
  29. Xu, Y., Zhang, F., Sheng, T., Ye, T., Yi, D., Yang, Y., Liu, S., Wang, X., Yao, J. (2019). Clarifying the controversial catalytic active sites of Co3O4 for the oxygen evolution reaction. J. Mater. Chem. A, 7, 23191–23198.10.1039/C9TA08379K
  30. Yu, M., Trinkle, D. R. (2011). Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys., 134, 064111.10.1063/1.355371621322665
  31. Zasada, F., Piskorz, W., Cristol, S., Paul, J.-F., Kotarba, A., Sojka, Z. (2010). Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: Molecular interpretation of water adsorption equilibria. J. Phys. Chem. C, 114, 22245–22253.10.1021/jp109264b
DOI: https://doi.org/10.2478/prolas-2020-0058 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 396 - 403
Submitted on: Oct 26, 2020
|
Accepted on: Nov 16, 2020
|
Published on: Jan 5, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Gulbanu A. Kaptagay, Nazira A. Sandibaeva, Talgat M. Inerbaev, Yuri A. Mastrikov, Eugene A. Kotomin, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.