Have a personal or library account? Click to login
Cross-Genera Transferability of Microsatellite Markers and Phylogenetic Assessment of Three Salsola Species from Western Kazakhstan Cover

Cross-Genera Transferability of Microsatellite Markers and Phylogenetic Assessment of Three Salsola Species from Western Kazakhstan

Open Access
|Dec 2020

References

  1. Anonymous (2018). The Sixth National Report of Biological Diversity in the Republic of Kazakhstan. Astana. 227 pp. Available at: https://www.cbd.int/doc/nr/nr-06/kz-nr-06-en.pdf
  2. Abdel-Hamid, A. M. E. (2016). Characterization of four Salsola species and their genetic relationship by AFLP. Pak. J. Bot., 48 (3), 1183–1187.
  3. Abdulina, S. A. (1999). Checklist of Vascular Plants in Kazakhstan. Almaty. 187 pp.
  4. Akhani, H., Edwards, G., Roalson, E. H. (2007). Diversification of the Old World Salsoleae s.l. (Chenopodiaceae): Molecular phylogenetic analysis of nuclear and chloroplast data sets and a revised classification. Int. J. Plant. Sci., 168 (6), 931–956.10.1086/518263
  5. Akhani, H., Khoshravesh, R., Malekmohammadi, M. (2016). Taxonomic novelties from Irano-Turanian region and NE Iran: Oreosalsola, a new segregate from Salsola sl, two new species in Anabasis and Salvia, and two new combinations in Caroxylon and Sesel. Phytotaxa, 249 (1), 159–180.10.11646/phytotaxa.249.1.7
  6. Akopian, J. A. (2011). Genus Salsola L. sensu lato (Chenopodiaceae) in South Transcaucasia [Акопян Ж. А. Род Salsola sensu lato (Chenopodiaceae) в Южном Закавказье]. Takhtajania [Тахтаджяния], 1, 124–132 (in Russian).
  7. Alirzayeva, E., Ali-zade, V., Shirvani, T., Toderich, K. (2015). Evaluation of wild halophytes of Aralo-Caspian flora towards soil restoration and food security improvement. In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M., Hakeem., K. (eds.) Plants, Pollutants and Remediation. Springer, Dordrecht, pp. 63–98.10.1007/978-94-017-7194-8_4
  8. Almerekova, S., Lisztes-Szabo, Zs., Mukhitdinov, N., Kurmanbayeva, M., Abidkulova, K., Sramko, G. (2018). Genetic diversity and population genetic structure of the endangered Kazakh endemic Oxytropis almaatensis (Fabaceae). Acta Bot. Hung., 60 (3–4), 263–278.10.1556/034.2018.1
  9. Ayres, D., Ryan, F.J., Grotkopp, E., Bailey, J., Gaskin, J. (2009). Tumble-weed (Salsola, section Kali) species and speciation in California. Biol. Invasions, 11 (5), 1175–1187.10.1007/s10530-008-9380-5
  10. Bochantsev, V. P. (1969). Genus Salsola L., a brief history of its development and settlement [Бочанцев В. П. Род Salsola L., краткая история его развития и расселения]. Bot. J. [Бот. журн], 54 (7), 989–1001 (in Russian).
  11. Botstein, D., White, R. L., Skolnick, M., Daviset, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer. J. Hum. Genet., 32 (3), 314–331.
  12. Chagné, D., Chaumeil, P., Ramboer, A., Collada, C., Guevara, A., Cervera, M. T., Vendramin, G. G., Garcia, V., Frigerio, J. M., Echt, C., Richardson, T., Plomion, C. (2004). Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theor. Appl. Genet., 109 (6), 1204–1214.10.1007/s00122-004-1683-z15448894
  13. Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X, Luo, K., Li, Y., Li, X., Jia, X., Lin, Y., Leon, C. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One,5 (1), e8613.10.1371/journal.pone.0008613279952020062805
  14. Cureton, A. N., Burns, M. J., Ford-Lloyd, B. V., Newbury, H. J. (2002). Development of simple sequence repeat (SSR) markers for the assessment of gene flow between sea beet (Beta vulgaris ssp. maritima) populations. Mol. Ecol. Notes., 2 (4), 402–403.10.1046/j.1471-8286.2002.00253.x
  15. Dossett, M., Bassil, N. V., Finn, C. E. (2009). Transferability of Rubus microsatellite markers for use in black raspberry. HortScience, 44, 103–109.10.17660/ActaHortic.2010.859.11
  16. Doyle, J. J., Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull.,19 (1), 11–15.
  17. Ekué, M. R. M., Gailing, O., Finkeldey, R. (2009). Transferability of simple sequence repeat (SSR) markers developed in Litchi chinensis to Blighia sapida (Sapindaceae). Plant Mol. Biol. Rep., 27 (4), 570.10.1007/s11105-009-0115-2388156824415832
  18. Fan, L., Zhang, M. Y., Liu, Q. Z., Li, L. T., Song, Y., Wang, L. F., Zhang, S. L., Wu, J. (2013). Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol. Biol. Rep. 31 (6), 1271–1282.10.1007/s11105-013-0586-z388156924415844
  19. Feng, S. P., Li, W. G., Huang, H. S., Wang, J. Y., Wu, Y. T. (2009). Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol. Breeding, 23 (1), 85–97.10.1007/s11032-008-9216-0
  20. Freitag, H. (1997). Salsola L. (Chenopodiaceae). In: Flora Iranica. Akadesche Druck-u, Verlagsanstalt, Graz, pp. 154–255.
  21. Gasic, K., Han, Y., Kertbundit, S., Shulaev, V., Lezzoni, A. F., Stover, E. W., Bell, R. L., Wisniewski, M. E., Korban, S. S. (2009). Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol. Breeding., 23 (3), 397–411.10.1007/s11032-008-9243-x
  22. Giraldo, E., Viruel, M. A., Lopez-Corrales, M., Hormaza, J. I. (2005). Char-acterisation and cross-species transferability of microsatellites in the common fig (Ficus carica L.). J. Hortic. Sci. Biotech., 80 (2), 217–224.10.1080/14620316.2005.11511920
  23. González-Martínez, S. C., Robledo-Arnuncio, J. J., Collada, C., Diaz, A., Williams, C. G., Alia, R., Cervera, M. T. (2004). Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor. Appl. Genet., 109 (1), 103–111.10.1007/s00122-004-1596-x14985972
  24. Grubov, V. I. (1980). Family Chenopodiaceae. [Грубов В. И. Семейство Маревые (Chenopodiaceae)]. In: Plant Life [Жизнь растений]. Education, Moscow, pp. 374–382 (in Russian).
  25. Hammer, O., Harper, D. A. T., Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron, 4 (1), 9.
  26. Huson, D. H., Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molec. Biol. Evol.,23 (2), 254–267.10.1093/molbev/msj03016221896
  27. Komarov, V. L. (1936). Flora of the USSR [Комаров В. Л. Флора CCCP]. Science, Leningrad (in Russian).
  28. Kumar, S., Stecher, G., Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molec. Biol. Evol., 33 (7), 1870–1874.10.1093/molbev/msw054
  29. Kurochkina, L.Ya. (2003). Psammofit desert shrub [Курочкина Л.Я. Псаммофитнокустарниковые пустыни]. In: Akzhigitova, N. I., Brekle, Z. V., Volkova, E. A. Geography of Kazakhstan and Central Asia (Within the Desert Region) [Акжигитова Н.И., Брекле З.В., Волкова Е.А. Ботаническая география Казахстана и Средней Азии (в пределах пустынной области)]. Science, St. Petersburg. pp. 83–92 (in Russian).
  30. Larin, I. V., Agababjan, Sh. M., Rabotnov, T. A., Ljubskaja, A. F, Larina, V. K., Kasimenko, M. A. (1951). Feed Plants of Hayfields and Pastures of the USSR [Ларин И. В., Агабабян Ш. М., Работнов Т. А., Любская А. Ф., Ларина В. К., Касименко М. А. Кормовыге растения сенокосов и пастбищ СССР]. State Publishing House of Agricultural Literature, Moscow. 947 pp. (in Russian).
  31. Long, Y., Zhang, J., Tian, X., Wu, S., Zhang, Q., Zhang, J. (2014). De novo assembly of the desert tree Haloxylon ammodendron (CA Mey.) based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics, 15 (1), 1–11.10.1186/1471-2164-15-1111
  32. McGray, H. G., Ayres, D. R., Sloop, C. M., Lee, A. K. (2008). Beta SSR loci cross-amplify in five Salsola taxa. Mol. Ecol. Resour., 8 (3), 608–611.10.1111/j.1471-8286.2007.02014.x21585847
  33. Metsalu, T., Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res., 43 (W1), W566–W570.10.1093/nar/gkv468448929525969447
  34. Milic, D., Lukovic, J., Zoric, L., Vasin, J., Ninkov, J., Zeremski, T., Milic, S. (2013). Halophytes relations to soil ionic composition. J. Serb. Chem. Soc., 78 (8), 1259–1268.10.2298/JSC121102159M
  35. Morenko, M. O. (2007). Halophytes of Altai mountainous system by example of family Chenopodiaceae [Моренко М. О. Галофиты Алтайской горной системы на примере семейства Маревые (Chenopodiaceae)]. Bulletin of Tomsk State University [Вестник Томского государственного университета], 298, 222–223 (in Russian).
  36. Mosyakin, S. L. (2003). Salsola Linnaeus. Flora of North America North of Mexico, 4, 398–403.
  37. Pallas, P. S. (1771). Reise durch verschiedene Provinzen des Russischen Reichs. Kayserliche Academie der Wissenschaften, St. Petersburg (in German). 504 pp.
  38. Pavlov, N. V. (1960). Flora of Kazakhstan [Павлов H. В. Флора Казахстана]. Science, Alma-Ata (in Russian).
  39. Peakall, R., Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes., 6, 288–295.10.1111/j.1471-8286.2005.01155.x
  40. Peakall, R., Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics, 28, 2537–2539.10.1093/bioinformatics/bts460346324522820204
  41. Popova, O. A (2015). Node structure of some species of the genera Salsola L. and Anabasis L. (Chenopodiaceae) and significance of this characteristic for systematics [Попова О. А. Строение узла некоторых видов родов Salsola L. и Anabasis L. (Chenopodiaceae) и значение этого признака для систематики]. Scientific Notes of the Transbaikal state University. Series: Biological Sciences [Ученые записки Забайкальского государственного университета. Серия: Биологические науки], 60 (1), 31–36 (in Russian).
  42. Pyankov, V. I., Artyusheva, E. G., Edwards, G. E., Black, Jr. C. C., Soltis, P. S. (2001). Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: Implications for the evolution of photo-synthesis types. Amer. J. Bot., 88 (7), 1189–1198.10.2307/3558329
  43. Qin, Y., Li, M., Cao, Y., Gao, Y., Zhang, W. (2017). Molecular thresholds of ITS2 and their implications for molecular evolution and species identification in seed plants. Sci. Rep., 7 (1), 1–8.10.1038/s41598-017-17695-2572541829229945
  44. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol., 34 (12), 3299–3302.10.1093/molbev/msx24829029172
  45. Ryan, F. J., Ayres, D. R. (2000). Molecular markers indicate two cryptic, genetically divergent populations of Russian thistle (Salsola tragus) in California. Can. J. Botany, 78 (1), 59–67.10.1139/b99-160
  46. Saitou, N., Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4 (4), 406–425.
  47. Shujskaja, E. V., Toderich, K. N. (2013). Isoenzymatic polymorphism in annual species of Salsola section Kali (Salsola aperta, S. paulsenii, S. pestifer and S. sogdiana) [Шуйская E. В., Тодерич К. H. Полиморфизм белков у однолетних видов Salsola секции Kali (Salsola aperta, S. paulsenii, S. pestifer и S. sogdiana)]. Bulletin of Bashkir University [Вестник Башкирского университета], 18 (2), 378–382 (in Russian).
  48. Sokolov, S. Ja., Svjazeva, O. A., Kubli, V. A. (1980). Areas of Trees and Shrubs of the USSR [Соколов С. Я., Связева О.А., Кубли В.А. Ареалыг деревьев и кустарников СССР]. Science, Leningrad (in Russian).
  49. Suhorukov, A. P. (2007). Horological method in solving problems of phylogeny and systematics of Eurasian representatives of the Chenopodiaceae family [Сухоруков А. П. Хорологический метод в решении проблем филогенеза и систематики евразийских представителей семейства Chenopodiaceae]. Arid. Ecosyst. [Аридныге экосистемыг],13 (32), 19-33 (in Russian).
  50. Toderich, K. N., Popova, V. V., Aralova, D. B., Gismatulina, L. G., Rekik, M., Rabbimov, A. R. (2016). Halophytes and salt tolerant forages as animal feed at farm level in Karakalpakstan [Тодерич К.Н., Попова В.В., Аралова Д.Б., Гисматулина Л.Г., Рекик Мурад и Раббимов А.Р. Галофитыг и солеустойчивыге растения в качестве корма животныгх на уровне фермерских хозяйств в Каракалпакстане]. Tashkent (in Russian).
  51. Turuspekov, Y., Abugalieva, S. (2015). Plant DNA barcoding project in Kazakhstan. Genome, 58 (5), 290.
  52. Turuspekov, Y., Genievskaya, Y., Baibulatova, A., Zatybekov, A., Kotuhov, Y., Imanbayeva, A., Abugalieva, S. (2018). Phylogenetic taxonomy of Artemisia L. species from Kazakhstan based on matK analyses. Proceed. Latv. Acad. Sci. Sect. B.,72 (1), 29–37.10.1515/prolas-2017-0068
  53. Wen, Z. B., Zhang, M. L., Zhu, G. L., Sanderson, S. C. (2010). Phylogeny of Salsoleae s.l. (Chenopodiaceae) based on DNA sequence data from ITS, psbB–psbH, and rbcL, with emphasis on taxa of northwestern China. Plant. Syst. Evol., 288 (1–2), 25–42.10.1007/s00606-010-0310-5
  54. Westman, A. L., Kresovich, S. (1997). Use of molecular marker techniques for description of plant genetic variation. Biotechnol. Plant Gen. Res., 9–48.
  55. White, T. J., Bruns, M. E., Lee, S., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J. (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, pp. 315–322.10.1016/B978-0-12-372180-8.50042-1
  56. Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., Mao, J. X. (1997). PopGene, the user-friendly shareware for population genetic analysis. POPGENE, user-friendly shareware. Popul. Genet. Anal., 10, 295–301.
  57. Yu, N., Wei, Y. L., Zhang, X., Zhu, N., Wang, Y. L., Zhu, Y., Zang, H. P., Li, F. M., Yang, L., Sun, J. Q., Sun, A. D. (2017). Barcode ITS2: A useful tool for identifying Trachelospermum jasminoides and a good monitor for medicine market. Sci. Rep., 7 (1), 1–9.10.1038/s41598-017-04674-w550605428698616
  58. Yumak, H., Ucar, T., Seyidbekiroglu, N. (2010). Briquetting soda weed (Salsola tragus) to be used as a rural fuel source. Biomass. Bioenerg., 34 (5), 630–636.10.1016/j.biombioe.2010.01.006
  59. Zhang, J., Zhao, P., Zhao, J., Chen, G. (2018). Synteny-based mapping of causal point mutations relevant to sand rice (Agriophyllum squarrosum) trichomeless1 mutant by RNA-sequencing. J. Plant Physiol., 231, 86–95.10.1016/j.jplph.2018.09.00330240969
  60. Zvolinskij, V. P., Tumanjan, A. F., Vvedenskij, V. V. (2013). Restoring and improving of productivity degraded rangeland ecosystems in arid zone of the Caspian sea region [Зволинский В. П., Туманян А. Ф., Введенский В. В. Восстановление и повышение продуктивности деградированных пастбищных экосистем в аридной зоне Прикаспия]. Theoretical and Applied Problems of Agro-Industrial Complex [Теоретические и прикладныге проблемыг агропромыгшленного комплекса], 16 (3), 26-29 (in Russian).
DOI: https://doi.org/10.2478/prolas-2020-0049 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 325 - 334
Submitted on: Aug 18, 2020
Accepted on: Sep 23, 2020
Published on: Dec 8, 2020
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 Shyryn Almerekova, Nasima Favarisova, Yerlan Turuspekov, Saule Abugalieva, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.