Have a personal or library account? Click to login
Sensory Feedback in Upper Limb Prostheses Cover

References

  1. Ahmad, S. A., Chappell, P. H. (2009). Artificial prehension and the detection of object slip. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich. IFMBE Proceedings, Vol. 25. Springer Nature, pp. 231–234.10.1007/978-3-642-03889-1_62
  2. Akhtar, A., Nguyen, M., Wan, L., Boyce, B., Slade, P., Bretl, T. (2014). Demonstration: Passive mechanical skin stretch for multiple degree-of-freedom proprioception in a hand prosthesis. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8619. Springer Verlag, pp. 413–415.10.1007/978-3-662-44196-1_16
  3. Antfolk, C., Björkman, A., Frank, S. O., Sebelius, F., Lundborg, G., Rosen, B. (2012). Sensory feedback from a prosthetic hand based on airmediated pressure from the hand to the forearm skin. J. Rehab. Med., 44 (8), 702–707.10.2340/16501977-100122729800
  4. Antfolk, C., Cipriani, C., Carrozza, M. C., Balkenius, C., Björkman, A., Lundborg, G., Sebelius, F. (2013). Transfer of tactile input from an artificial hand to the forearm: Experiments in amputees and able-bodied volunteers. Disability Rehab. Assist. Technol.,8 (3), 249–254.10.3109/17483107.2012.71343522928878
  5. Antfolk, C., D’Alonzo, M., Controzzi, M., Lundborg, G., Rosen, B., Sebelius, F., Cipriani, C. (2013). Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Transact. Neural Syst. Rehab. Eng.,21 (1), 112–120.10.1109/TNSRE.2012.221798923033439
  6. Antfolk, C., D’Alonzo, M., Rosén, B., Lundborg, G., Sebelius, F., Cipriani, C. (2013). Sensory feedback in upper limb prosthetics. Expert Rev. Med. Devices, 10 (1), 45–54.10.1586/erd.12.6823278223
  7. Aszmann, O. C., Vujaklija, I., Roche, A. D., Salminger, S., Herceg, M., Sturma, A., Hruby, L. A., Pittermann, A., Hofer, Ch., Amsuess, S., Farina, D. (2016). Elective amputation and bionic substitution restore functional hand use after critical soft tissue injuries. Sci. Rep.,6, 34960.10.1038/srep34960
  8. Atkins, D. J., Heard, D. C. Y., Donovan, W. H. (1996). Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J. Prosth. Orth., 2–12. https://doi.org/10.1097/00008526-199600810-00003.10.1097/00008526-199600810-00003
  9. Badia, J., Boretius, T., Pascual-Font, A., Udina, E., Stieglitz, T., Navarro, X. (2011). Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve. IEEE Transact. Biomed. Eng.,58 (8), 2324–2332.10.1109/TBME.2011.215385021571604
  10. Bark, K., Wheeler, J. W., Premakumar, S., Cutkosky, M. R. (2008). Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. In: Proceedings of the Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, Reno, NE, 13-14 March 2008, pp. 71–78.10.1109/HAPTICS.2008.4479916
  11. Bark, K., Wheeler, J., Shull, P., Savall, J., Cutkosky, M. (2010). Rotational skin stretch feedback: A wearable haptic display for motion. IEEE Transact. Haptics, 3 (3), 166–176.10.1109/TOH.2010.2127788071
  12. Benz, H. L., Yao, J., Rose, L., Olgac, O., Kreutz, K., Saha, A., Civillico, E. F. (2016). Upper extremity prosthesis user perspectives on unmet needs and innovative technology. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2016-October. Institute of Electrical and Electronics Engineers Inc., pp. 287–290.10.1109/EMBC.2016.7590696550865328268333
  13. Biddiss, E., Chau, T. (2007). Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthotics Int.,31 (3), 236–256.10.1080/03093640600994581
  14. Björkman, A., Weibull, A., Olsrud, J., Henrik Ehrsson, H., Rosén, B., Björkman-Burtscher, I. M. (2012). Phantom digit somatotopy: A functional magnetic resonance imaging study in forearm amputees. Eur. J. Neurosci.,36 (1), 2098–2106.10.1111/j.1460-9568.2012.08099.x
  15. Björkman, A., Wijk, U., Antfolk, C., Björkman-Burtscher, I., Rosén, B. (2016). Sensory qualities of the phantom hand map in the residual forearm of amputees. J. Rehab. Med.,48 (4), 365–370.10.2340/16501977-2074
  16. Boretius, T., Badia, J., Pascual-Font, A., Schuettler, M., Navarro, X., Yoshida, K., Stieglitz, T. (2010). A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosensors and Bioelectronics, 26 1), 62–69.10.1016/j.bios.2010.05.010
  17. Branner, A., Stein, R. B., Normann, R. A. (2017). Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J. Neurophysiol.,85 (4), 1585–1594.10.1152/jn.2001.85.4.1585
  18. Casini, S., Morvidoni, M., Bianchi, M., Catalano, M., Grioli, G., Bicchi, A. (2015). Design and realization of the CUFF. Clenching upper-limb force feedback wearable device for distributed mechano-tactile stimulation of normal and tangential skin forces. In: IEEE International Conference on Intelligent Robots and Systems. Vol. 2015. December Institute of Electrical and Electronics Engineers Inc., pp. 1186–1193.10.1109/IROS.2015.7353520
  19. Castro, J., Negredo, P., Avendaño, C. (2008). Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res.,1190 (1), 65–77.10.1016/j.brainres.2007.11.028
  20. Chai, G. H., Li, S., Sui, X. H., Mei, Z., He, L. W., Zhong, C. L., Lan, N. (2013). Phantom finger perception evoked with transcutaneous electrical stimulation for sensory feedback of prosthetic hand. In: International IEEE/EMBS Conference on Neural Engineering, NER, san Diego, 6–8 November, 2013. Institute of Electrical and Electronics Engineers, pp. 271–274.10.1109/NER.2013.6695924
  21. Chai, G., Sui, X., Li, S., He, L., Lan, N. (2015). Characterization of evoked tactile sensation in forearm amputees with transcutaneous electrical nerve stimulation. J. Neural Eng.,12 (6).10.1088/1741-2560/12/6/066002
  22. Chau, B., Phelan, I., Ta, P., Humbert, S., Hata, J., Tran, D. (2017). Immersive virtual reality therapy with myoelectric control for treatment-resistant phantom limb pain: Case report. Innovations in Clin. Neurosci.,14 (7–8), 3–7.
  23. Cheesborough, J. E., Smith, L. H., Kuiken, T. A., Dumanian, G. A. (2015). Targeted muscle reinnervation and advanced prosthetic arms. Semin. Plastic Surg.,29 (1), 62–72.10.1055/s-0035-1544166
  24. Chen, R., Cohen, L. G., Hallett, M. (2002). Nervous system reorganization following injury. Neuroscience, 111 (4), 761–773.10.1016/S0306-4522(02)00025-8
  25. Cho, Y., Liang, K., Folowosele, F., Miller, B., Thakor, N. V. (2007). Wireless temperature sensing cosmesis for prosthesis. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, 13–15 June 2007, Noordwijk. Institute of Electrical and Electronics Engineers, pp. 672–677.10.1109/ICORR.2007.4428497
  26. Chortos, A., Liu, J., Bao, Z. (2016). Pursuing prosthetic electronic skin. Nature Mater.,15, 937–950.10.1038/nmat467127376685
  27. Cipriani, C., Controzzi, M., Carrozza, M. C. (2010). Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica, 28 (6), 919–927.10.1017/S0263574709990750
  28. Cipriani, C., Dalonzo, M., Carrozza, M. C. (2012). A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Transactions on Biomedical Engineering, 59 (2), 400–408.10.1109/TBME.2011.217334222042125
  29. Clemente, F., D’Alonzo, M., Controzzi, M., Edin, B. B., Cipriani, C. (2016). Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Transact. Neur. Syst. Rehab. Eng., 24 (12), 1314–1322.10.1109/TNSRE.2015.250058626584497
  30. Clemente, F., Dosen, S., Lonini, L., Markovic, M., Farina, D., Cipriani, C. (2017). Humans can integrate augmented reality feedback in their sensorimotor control of a robotic hand. IEEE Transact. Human-Machine Syst.,47 (4), 583–589.10.1109/THMS.2016.2611998
  31. Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., Schwartz, A. B. (2013). High-performance neuro-prosthetic control by an individual with tetraplegia. The Lancet, 381 (9866), 557–564.10.1016/S0140-6736(12)61816-9
  32. Collins, K. L., Guterstam, A., Cronin, J., Olson, J. D., Ehrsson, H. H., Ojemann, J. G. (2017). Ownership of an artificial limb induced by electrical brain stimulation. Proceed. Nat. Acad. Sci. USA,114 (1), 166–171.10.1073/pnas.1616305114522439527994147
  33. Culjat, M. O., Son, J., Fan, R. E., Wottawa, C., Bisley, J. W., Grundfest, W. S., Dutson, E. P. (2010). Remote tactile sensing glove-based system. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10. pp. 1550–1554.10.1109/IEMBS.2010.5626824
  34. D’Alonzo, M., Clemente, F., Cipriani, C. (2015). Vibrotactile stimulation promotes embodiment of an Alien hand in amputees with phantom sensations. IEEE Transact. Neural Syst. Rehab. Eng.,23 (3), 450–457.10.1109/TNSRE.2014.233795225051556
  35. D’Alonzo, M., Dosen, S., Cipriani, C., Farina, D. (2014). HyVE-hybrid vibro-electrotactilestimulation is an efficient approachto multi-channel sensory feedback. IEEE Transact. Haptics, 7(2), 181–190.10.1109/TOH.2013.5224968382
  36. D’Alonzo, M., Dosen, S., Cipriani, C., Farina, D. (2014). HyVE: Hybrid vibro-electrotactile stimulation for sensory feedback and substitution in rehabilitation. IEEE Transact. Neural Syst. Rehab. Eng.,22 (2), 290–301.10.1109/TNSRE.2013.226648223782817
  37. D’Anna, E., Petrini, F. M., Artoni, F., Popovic, I., Simaniã, I., Raspopovic, S., Micera, S. (2017). A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep.,7 (1), 10930.10.1038/s41598-017-11306-w
  38. Davis, T. S., Wark, H. A. C., Hutchinson, D. T., Warren, D. J., O’Neill, K., Scheinblum, T., Greger, B. (2016). Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng.,13 (3), 036001.10.1088/1741-2560/13/3/03600127001946
  39. Del Valle, J., Navarro, X. (2013). Interfaces with the peripheral nerve for the control of neuroprostheses. In: Int. Rev. Neurobiol.,109, 63–83.10.1016/B978-0-12-420045-6.00002-X
  40. Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T., Horch, K. W. (2004). Residual function in peripheral nerve stumps of amputees: Implications for neural control of artificial limbs. J. Hand Surg.,29 (4), 605–615.10.1016/j.jhsa.2004.02.00615249083
  41. Di Iorio, R., Granata, G., Miraglia, F., Vecchio, F., Rossini, P. M. (2018). T155. Brain reactions following the use of robotic hand prosthesis in human amputees. Clin. Neurophysiol.,129, e62.10.1016/j.clinph.2018.04.156
  42. Dietrich, C., Walter-Walsh, K., Preißler, S., Hofmann, G. O., Witte, O. W., Miltner, W. H. R., Weiss, T. (2012). Sensory feedback prosthesis reduces phantom limb pain: Proof of a principle. Neurosci. Lett.,507 (2), 97–100.10.1016/j.neulet.2011.10.06822085692
  43. Dosen, S., Schaeffer, M. C., Farina, D. (2014). Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback. J. NeuroEng. Rehab.,11 (1), 138.10.1186/1743-0003-11-138418278925224266
  44. Ehrsson, H. H., Rosén, B., Stockselius, A., Ragnö, C., Köhler, P., Lundborg, G. (2008). Upper limb amputees can be induced to experience a rubber hand as their own. Brain, 131 (12), 3443–3452.10.1093/brain/awn297263920219074189
  45. Flesher, S. N., Collinger, J. L., Foldes, S. T., Weiss, J. M., Downey, J. E., Tyler-Kabara, E. C., Bensmaia, S. J., Schwartz, A. B., Boninger, M. L., Gaunt, R. A. (2016). Intracortical microstimulation of human somato-sensory cortex. Sci. Translat. Med.,8 (361).10.1126/scitranslmed.aaf8083
  46. Gallo, S., Cucu, L., Thevenaz, N., Sengül, A., Bleuler, H. (2014). Design and control of a novel thermo-tactile multimodal display. In: IEEE Haptics Symposium, HAPTICS, 23–26 February 2014, Houslon, Tx. IEEE Computer Society, pp. 75–81.10.1109/HAPTICS.2014.6775436
  47. Gart, M. S., Souza, J. M., Dumanian, G. A. (2015). Targeted muscle reinnervation in the upper extremity amputee: A technical roadmap. J. Hand Surg. Amer.,40 (9), 1877–1888.10.1016/j.jhsa.2015.06.11926314220
  48. Geethanjali, P. (2016). Myoelectric control of prosthetic hands: State-ofthe-art review. Med. Dev. Evidence Res.,9 (1), 247–255.10.2147/MDER.S91102496885227555799
  49. Godfrey, S. B., Bianchi, M., Bicchi, A., Santello, M. (2016). Influence of force feedback on grasp force modulation in prosthetic applications: A preliminary study. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 16–20 August 2016, Orlando, Fl. Vol. 2016. Institute of Electrical and Electronics Engineers Inc., pp. 5439–544210.1109/EMBC.2016.7591957570829528269488
  50. Graczyk, E. L., Resnik, L., Schiefer, M. A., Schmitt, M. S., Tyler, D. J. (2018). Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Scientific Reports, 8 (1), 9866.10.1038/s41598-018-26952-x602611829959334
  51. Grinberg, Y., Schiefer, M. A., Tyler, D. J., Gustafson, K. J. (2008). Fascicular perineurium thickness, size, and position affect model predictions of neural excitation. IEEE Transact. Neural Syst. Rehab. Eng.,16 (6), 572–581.10.1109/TNSRE.2008.2010348291842119144589
  52. Hammock, M. L., Chortos, A., Tee, B. C., Tok, J. B. and Bao, Z. (2013). 25th anniversary article: The evolution of electronic skin (E?Skin): A brief history, design considerations, and recent progress. Adv. Mater., 25, 5997–6038.10.1002/adma.20130224024151185
  53. Hartmann, C., Došen, S., Amsuess, S., Farina, D. (2015). Closed-loop control of myoelectric prostheses with electrotactile feedback: Influence of stimulation artifact and blanking. IEEE Transact. Neural Syst. Rehab. Eng.,23 (5), 807–816.10.1109/TNSRE.2014.235717525222951
  54. Hasson, C. J., Manczurowsky, J. (2015). Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm. J. NeuroEng. Rehab., 12 (1), 31.10.1186/s12984-015-0025-5439157825879430
  55. Hebert, J. S., Elzinga, K., Chan, K. M., Olson, J., Morhart, M. (2014). Updates in targeted sensory reinnervation for upper limb amputation. Curr. Surg. Rep.,2 (3), 45.10.1007/s40137-013-0045-7
  56. Hebert, J. S., Olson, J. L., Morhart, M. J., Dawson, M. R., Marasco, P. D., Kuiken, T. A., Chan, K. M. (2014). Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Transact. Neur. Syst. Rehab. Eng.,22 (4), 765–773.10.1109/TNSRE.2013.229490724760915
  57. Hruby, L. A., Pittermann, A., Sturma, A., Aszmann, O. C. (2018). The Vienna psychosocial assessment procedure for bionic reconstruction in patients with global brachial plexus injuries. PLoS ONE, 13 (1), e0189592.10.1371/journal.pone.0189592575198929298304
  58. Hruby, L. A., Sturma, A., Mayer, J. A., Pittermann, A., Salminger, S., Aszmann, O. C. (2017). Algorithm for bionic hand reconstruction in patients with global brachial plexopathies. J. Neurosurg.,127 (5), 1163–1171.10.3171/2016.6.JNS1615428093018
  59. Isakoviã, M., Beliã, M., Štrbac, M., Popoviã, I., Došen, S., Farina, D., Keller, T. (2016). Electrotactile feedback improves performance and facilitates learning in the routine grasping task. Eur. J. Translat. Myol.,26 (3), 6069.10.4081/ejtm.2016.6069512896927990236
  60. Jenmalm, P., Birznieks, I., Goodwin, A. W., Johansson, R. S. (2003). Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation. Eur. J. Neurosci.,18 (1), 164–176.10.1046/j.1460-9568.2003.02721.x12859350
  61. Jiang, L., Huang, Q., Zhao, J., Yang, D., Fan, S., Liu, H. (2014). Noise cancellation for electrotactile sensory feedback of myoelectric forearm pros-theses. In: 2014 IEEE International Conference on Information and Automation, ICIA 2014, 28–30 July 2014, Hailar. Institute of Electrical and Electronics Engineers Inc., pp. 1066–107110.1109/ICInfA.2014.6932807
  62. Johansson, R. S., Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10, 345–359.10.1038/nrn262119352402
  63. Jorgovanovic, N., Dosen, S., Djozic, D. J., Krajoski, G., Farina, D. (2014). Virtual grasping: Closed-loop force control using electrotactile feedback. Comput. Mathem. Meth. Med.,2014, 1–13.10.1155/2014/120357390998024516504
  64. Kaczmarek, K. A., Webster, J. G., Bach-y-Rita, P., Tompkins, W. J. (1991). Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transact. Biomed. Eng.,38 (1), 1–16.10.1109/10.682042026426
  65. Kikkert, S., Kolasinski, J., Jbabdi, S., Tracey, I., Beckmann, C. F., Berg, H. J., Makin, T. R. (2016). Revealing the neural fingerprints of a missing hand. ELife, 5, e15292.10.7554/eLife.15292.016
  66. Klaes, C., Shi, Y., Kellis, S., Minxha, J., Revechkis, B., Andersen, R. A. (2014). A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J. Neural Eng.,11 (5), 056024.10.1088/1741-2560/11/5/056024441097325242377
  67. Kovacs, G. T. A., Storment, C. W., Rosen, J. M. (1992). Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Transact. Biomed. Eng.,39 (9), 893–902.10.1109/10.2564221473818
  68. Kuiken, T. A., Barlow, A. K., Hargrove, L. J., Dumanian, G. A. (2017). Targeted muscle reinnervation for the upper and lower extremity. Techn. Orthopaed.,32 (2), 109–116.10.1097/BTO.0000000000000194544841928579692
  69. Kuiken, T. A., Li, G., Lock, B. A., Lipschutz, R. D., Miller, L. A., Stubblefield, K. A., Englehart, K. B. (2009). Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA -Journal of the American Medical Association, 301 (6), 619–628.10.1001/jama.2009.116303616219211469
  70. Kuiken, T. A., Miller, L. A., Lipschutz, R. D., Lock, B. A., Stubblefield, K., Marasco, P. D., Dumanian, G. A. (2007). Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet, 369 (9559), 371–380.10.1016/S0140-6736(07)60193-7
  71. Lago, N., Ceballos, D., J Rodríguez, F., Stieglitz, T., Navarro, X. (2005). Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials, 26 (14), 2021–2031.10.1016/j.biomaterials.2004.06.02515576176
  72. LeBlanc, M. (2008). “Give Hope-Give a Hand”, The LN-4 prosthetic hand. Available at: https://dokumen.tips/documents/maurice-leblanc-msme-cp-give-hope-give-a-hand-the-leblanc-msme-cp-give.html (accessed 10.09.2020).
  73. Ledbetter, N. M., Ethier, C., Oby, E. R., Hiatt, S. D., Wilder, A. M., Ko, J. H., Miller, L. E., Wilder, A. M., Agnew, S. P., Clark, G. A. (2012). Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses. J. Neurophysiol.,109 (2), 580–590.10.1152/jn.00688.2011
  74. Leonardis, D., Solazzi, M., Bortone, I., Frisoli, A. (2015). A wearable fingertip haptic device with 3 DoF asymmetric 3-RSR kinematics. In: IEEE World Haptics Conference, WHC 2015, 22–26 June 2015, Evanston, Il.Institute of Electrical and Electronics Engineers Inc., pp. 388–393.10.1109/WHC.2015.7177743
  75. Leventhal, D. K., Durand, D. M. (2003). Subfascicle stimulation selectivity with the flat interface nerve electrode. Ann. Biomed. Eng.,31 (6), 643–652.10.1114/1.156926612797613
  76. Li, M., Zhang, D., Chen, Y., Chai, X., He, L., Chen, Y., Guo, J., Sui, X. (2018). Discrimination and recognition of phantom finger sensation through transcutaneous electrical nerve stimulation. Frontiers Neurosci.,12, 283.10.3389/fnins.2018.00283593701029760647
  77. Liu, X. X., Chai, G. H., Qu, H. E., Lan, N. (2015). A sensory feedback system for prosthetic hand based on evoked tactile sensation. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 25–29 August 2015, Milan. Vol. 2015. Institute of Electrical and Electronics Engineers Inc., pp. 2493–2496.10.1109/EMBC.2015.731889826736798
  78. Lotfi, P., Garde, K., Chouhan, A. K., Bengali, E., Romero-Ortega, M. I. (2011). Modality-specific axonal regeneration: Toward selective regenerative neural interfaces. Frontiers Neuroeng.,4, 11.10.3389/fneng.2011.00011319153122016734
  79. Markovic, M., Karnal, H., Graimann, B., Farina, D., Dosen, S. (2017). GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses. J. Neural Eng.,14 3), 036007.10.1088/1741-2552/aa620a28355147
  80. Meli, L., Hussain, I., Aurilio, M., Malvezzi, M., O’Malley, M. K., Prattichizzo, D. (2018). The hBracelet: A wearable haptic device for the distributed mechanotactile stimulation of the upper limb. IEEE Robot. Automat. Lett.,3 (3), 2198–2205.10.1109/LRA.2018.2810958
  81. Mohamad Hanif, N. H. H., Nik Hashim, N. N., Chappell, P. H., White, N. M., Cranny, A. W. (2016). Tactile to vibrotactile sensory feedback interface for prosthethic hand users. In: IEEE-EMBS Conference on Biomedical Engineering and Sciences, 4–8 December 2016, Kuala Lumpur. Institute of Electrical and Electronics Engineers Inc., pp. 326–330.10.1109/IECBES.2016.7843467
  82. Morita, T., Kikuchi, T., Ishii, C. (2016). Development of sensory feedback device for myoelectric prosthetic hand to provide hardness of objects to users. J. Robotics Mechatron.,28 (3), 361–370.10.20965/jrm.2016.p0361
  83. Nabeel, M., Aqeel, K., Ashraf, M. N., Awan, M. I., Khurram, M. (2016). Vibrotactile stimulation for 3D printed prosthetic hand. In: 2nd International Conference on Robotics and Artificial Intelligence, 1–2 November 2016, Rawalpindi. Institute of Electrical and Electronics Engineers, pp. 202–207.10.1109/ICRAI.2016.7791254
  84. Navarro, X., Krueger, T. B., Lago, N., Micera, S., Stieglitz, T., Dario, P. (2005). A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Periph. Nervous Syst.,10 (3), 229–258.10.1111/j.1085-9489.2005.10303.x16221284
  85. Ninu, A., Dosen, S., Muceli, S., Rattay, F., Dietl, H., Farina, D. (2014). Closed-loop control of grasping with a myoelectric hand prosthesis: Which are the relevant feedback variables for force control? IEEE Transact. Neural Syst. Rehab. Eng.,22 (5), 1041–1052.10.1109/TNSRE.2014.231843124801625
  86. O’Doherty, J. E., Lebedev, M. A., Ifft, P. J., Zhuang, K. Z., Shokur, S., Bleuler, H., Nicolelis, M. A. L. (2011). Active tactile exploration using a brain-machine-brain interface. Nature, 479 (7372), 228–231.10.1038/nature10489
  87. Oddo, C. M., Raspopovic, S., Artoni, F., Mazzoni, A., Spigler, G., Petrini, F., Giambattistelli, F., Vecchio, F., Miraglia, F., Zollo, L. et al. (2016). Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. ELife, 5, e09148.10.7554/eLife.09148479896726952132
  88. Osumi, M., Inomata, K., Inoue, Y., Otake, Y., Morioka, S., Sumitani, M. (2019). Characteristics of phantom limb pain alleviated with virtual reality rehabilitation. Pain Med.,20 (5), 1038–1046.10.1093/pm/pny26930576543
  89. Peerdeman, B., Boere, D., Witteveen, H., in ’t Veld, R. H., Hermens, H., Stramigioli, S., Misra, S. (2011). Myoelectric forearm prostheses: State of the art from a user-centered perspective. J. Rehab. Res. Devel.,48 (6), 719–737.10.1682/JRRD.2010.08.016121938658
  90. Ramachandran, V. S., Hirstein, W. (1998). The perception of phantom limbs. The D. O. Hebb lecture. Brain, 121 (9), 1603–1630.10.1093/brain/121.9.1603
  91. Ramachandran, V. S., Rogers-Ramachandran, D. (2000). Phantom limbs and neural plasticity. Arch. Neurol.,57 (3), 317–320.10.1001/archneur.57.3.31710714655
  92. Raspopovic, S., Capogrosso, M., Petrini, F. M., Bonizzato, M., Rigosa, J., Pino, G. D., … Micera, S. (2014). Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Translat. Med.,6 (222), 222ra19.10.1126/scitranslmed.3006820
  93. Raveh, E., Friedman, J., Portnoy, S. (2018). Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Assistive Technol.,30 (5), 274–280.10.1080/10400435.2017.132380928628379
  94. Reza Motamedi, M., Otis, M., Duchaine, V. (2017). The impact of simultaneously applying normal stress and vibrotactile stimulation for feedback of exteroceptive information. J. Biomechan. Eng.,139 (6), 061004.10.1115/1.403641728395001
  95. Rosenbaum-Chou, T., Daly, W., Austin, R., Chaubey, P., Boone, D. A. (2016). Development and real world use of a vibratory haptic feedback system for upper-limb prosthetic users. J. Prosthetics Orthotics, 28 (4), 136–144.10.1097/JPO.0000000000000107
  96. Saal, H. P., Bensmaia, S. J. (2015). Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia, 79, 344–353.10.1016/j.neuropsychologia.2015.06.01026092769
  97. Schweisfurth, M. A., Markovic, M., Dosen, S., Teich, F., Graimann, B., Farina, D. (2016). Electrotactile EMG feedback improves the control of pros-thesis grasping force. J. Neur. Eng.,13 (5), 056010.10.1088/1741-2560/13/5/056010
  98. Serino, A., Akselrod, M., Salomon, R., Martuzzi, R., Blefari, M. L., Canzoneri, E., Blanke, O. (2017). Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain, 140 (11), 2993–3011.10.1093/brain/awx24229088353
  99. Shi, P., Shen, X. (2015). Sensation feedback and muscle response of electrical stimulation on the upper limb skin: A case study. In: Proceedings of the 2015 7th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA, 13-14 June 2015, Nanchang. Institute of Electrical and Electronics Engineers Inc., pp. 969–972.10.1109/ICMTMA.2015.236
  100. Snow, P. W., Sedki, I., Sinisi, M., Comley, R., Loureiro, R. C. V. (2017). Robotic therapy for phantom limb pain in upper limb amputees. In: IEEE 15th International Conference on Rehabilitation Robotics, 17–20 July 2017, London . IEEE Computer Society, pp. 1019–1024.10.1109/ICORR.2017.8009383
  101. Stephens-Fripp, B., Alici, G., Mutlu, R. (2018). A review of non-invasive sensory feedback methods for transradial prosthetic hands. IEEE,6, 6878–6899.10.1109/ACCESS.2018.2791583
  102. Stepp, C. E., An, Q., Matsuoka, Y. (2012). Repeated training with augmentative vibrotactile feedback increases object manipulation performance. PLoS ONE, 7 (2), e32743.10.1371/journal.pone.0032743
  103. Štrbac, M., Beliã, M., Isakoviã, M., Kojiã, V., Bijeliã, G., Popoviã, I., Radotic, M., Došen, S., Markovic, M., Farina, D., Keller, T. (2016). Integrated and flexible multichannel interface for electrotactile stimulation. J. Neur. Eng.,13 (4), 046014.10.1088/1741-2560/13/4/046014
  104. Svensson, P., Wijk, U., Björkman, A., Antfolk, C. (2017). A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev. Med. Devices, 14 (6), 439–447.10.1080/17434440.2017.1332989
  105. Tan, D. W., Schiefer, M. A., Keith, M. W., Anderson, J. R., Tyler, J., Tyler, D. J. (2014). A neural interface provides long-term stable natural touch perception. Sci.Transl. Med.,6 (257), 257ra138.10.1126/scitranslmed.3008669
  106. Tyler, D. J., Durand, D. M. (2002). Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Transact. Neural Syst. Rehab. Eng.,10 (4), 294–303.10.1109/TNSRE.2002.806840
  107. Ueda, Y., Ishii, C. (2017). Development of a feedback device of temperature sensation for a myoelectric prosthetic hand by using Peltier element. In: International Conference on Advanced Mechatronic Systems, ICAMechS, 30 November – 3 December 2016, Melbourne. IEEE Computer Society, pp. 488–493.10.1109/ICAMechS.2016.7813497
  108. Valle, G., Petrini, F. M., Strauss, I., Iberite, F., D’Anna, E., Granata, G., Controzzi, M., Ciporiani, C., Stieglitz, T., Rossini, P. M., Mazzoni, A., Raspopovic, S., Micera, S. (2018). Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep.,8 (1), 16666.10.1038/s41598-018-34910-w
  109. Van Den Heiligenberg, F. M. Z., Orlov, T., MacDonald, S. N., Duff, E. P., Henderson Slater, D., Beckmann, C. F., Johansen-Berg, H., Culham, J. C., Makin, T. R. (2018). Artificial limb representation in amputees. Brain, 141 (5), 1422–1433.10.1093/brain/awy054
  110. Walker, C. F., Lockhead, G. R., Markle, D. R., McElhaney, J. H. (1977). Parameters of stimulation and perception in an artificial sensory feedback system. J. Bioeng.,1 (3), 251–256.
  111. Wall, J. T., Xu, J., Wang, X. (2002, September). Human brain plasticity: An emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res. Rev.,39 (2–3), 181–215.10.1016/S0165-0173(02)00192-3
  112. Wheeler, J., Bark, K., Savall, J., Cutkosky, M. (2010). Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Transact. Neural Syst. Rehab. Eng.,18 (1), 58–66.10.1109/TNSRE.2009.203960220071271
  113. Witteveen, H. J. B., Droog, E. A., Rietman, J. S., Veltink, P. H. (2012). Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Transact. Biomed. Eng.,59 (8), 2219–2226.10.1109/TBME.2012.220067822645262
  114. Witteveen, H. J. B., Rietman, H. S., Veltink, P. H. (2015). Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthetics Orthotics Int.,39 (3), 204–212.10.1177/030936461452226024567348
  115. Xu, B., Akhtar, A., Liu, Y., Chen, H., Yeo, W. H., Park, S., Rogers, J. A. (2016). An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Advanced Materials, 28 (22), 4462–4471.10.1002/adma.201504155483367526469201
  116. Xu, H., Zhang, D., Huegel, J. C., Xu, W., Zhu, X. (2016). Effects of different tactile feedback on myoelectric closed-loop control for grasping based on electrotactile stimulation. IEEE Transact. Neural Syst. Rehab. Eng.,24 (8), 827–836.10.1109/TNSRE.2015.247815326372430
  117. Yamada, H., Yamanoi, Y., Wakita, K., Kato, R. (2016). Investigation of a cognitive strain on hand grasping induced by sensory feedback for myoelectric hand. In: Proceedings of the IEEE International Conference on Robotics and Automation, 16–21 May 2016, Stockholm. Institute of Electrical and Electronics Engineers Inc., pp. 3549–3554.10.1109/ICRA.2016.7487537
  118. Zhang, D., Xu, H., Shull, P. B., Liu, J., Zhu, X. (2015). Somatotopical feedback versus non-somatotopical feedback for phantom digit sensation on amputees using electrotactile stimulation. J. NeuroEng. Rehab.,12 (1).10.1186/s12984-015-0037-1441627625929589
  119. Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., Brookmeyer, R. (2008). Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehab.,89 (3), 422–429.10.1016/j.apmr.2007.11.00518295618
  120. Zuo, K. J., Willand, M. P., Ho, E. S., Ramdial, S., Borschel, G. H. (2018). Targeted muscle reinnervation. Plastic Reconstruct. Surg.,141 (6), 1447–1458.10.1097/PRS.000000000000437029579026
DOI: https://doi.org/10.2478/prolas-2020-0047 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 308 - 317
Submitted on: Aug 8, 2019
|
Accepted on: Sep 9, 2020
|
Published on: Dec 8, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 Dace Dimante, Ināra Logina, Marco Sinisi, Angelika Krūmiņa, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.