Have a personal or library account? Click to login
Convective Instability of a Steady Flow in an Annulus Caused by Internal Heat Generation Cover

Convective Instability of a Steady Flow in an Annulus Caused by Internal Heat Generation

Open Access
|Sep 2020

References

  1. Abricka, M., Barmina, I., Purmalis, M., Valdmains, R., Zake, M., Kalis, H. (2016). Experimental and numerical studies on integrated gasification and combustion of biomass. Chem. Eng. Trans., 50, 127–132.
  2. Barmina, I., Purmalis, M., Valdmains, R., Zake, M. (2016). Electrodynamic control of the combustion characteristics and heat energy production. Combustion Sci. Tech., 188, 190–206.10.1080/00102202.2015.1088010
  3. Gershuni, G. Z., Zhukhovitskii, E. M., Iakimov, A. A. (1970). On the stability of steady convective motion generated by internal heat sources. J. Appl. Math. Mech., 34, 700–705.10.1016/0021-8928(70)90118-8
  4. Gershuni, G. Z., Zhukhovitskii, E. M., Iakimov, A. A. (1973). Two kinds of instability of stationary convective motion induced by internal heat sources. J. Appl. Math. Mech., 37, 564–568.10.1016/0021-8928(73)90100-7
  5. Iltina, M., Iltins, I., Kolyshkin, A. (2017). Convective stability of a chemically reacting fluid in annulus. In: Proceedings of the 7th International Conference on Computational Methods for Coupled Problems in Science and Engineering, 12/14 June 2017, Rhodes Island, Greece, pp. 427–433.
  6. Koliskina, V., Kolyshkin, A., Volodko, I., Kalis, H. (2016). On the stability of a convective motion generated by a chemically reacting fluid in a pipe. In: Amer. Inst. Phys. Conf. Proc.,1738 (1), 480028.
  7. Kolyshkin, A., Koliskina, V. (2018a). Linear stability analysis of a convective flow in a pipe due to radially distributed heat sources. In: Proceedings of the 17th International Scientific Conference Engineering for Rural Development, 23–25 May, 2018, Jelgava, Latvia, pp. 1289–1294.10.22616/ERDev2018.17.N022
  8. Kolyshkin, A., Koliskina, V. (2018b). Stability of a convective flow in a pipe caused by internal heat generation. JP J. Heat Mass Transfer, 15, 515–530.10.17654/HM015030515
  9. Kolyshkin, A. A., Vaillancourt, R. (1991). Stability of internally generated thermal convection in a tall vertical annulus. Can J. Phys., 69, 743–748.10.1139/p91-124
  10. Su, Y. C., Chung, J. N. (2000). Linear stability analysis of mixed-convection flow in a vertical pipe. J. Fluid Mech.,422, 141–166.10.1017/S0022112000001762
  11. Yao, L. S. (1987). Is a fully developed and non-isothermal flow possible in a vertical pipe? Int. J. Heat Mass Transfer., 30, 707–716.10.1016/0017-9310(87)90201-8
DOI: https://doi.org/10.2478/prolas-2020-0045 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 293 - 298
Submitted on: Apr 12, 2019
|
Accepted on: Jun 27, 2020
|
Published on: Sep 22, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 Andrei Kolyshkin, Valentina Koliskina, Inta Volodko, Ilmārs Iltins, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.