Have a personal or library account? Click to login
The Effect of 5-Aminosalicylic Acid on Intestinal Microbiota Cover

References

  1. Abdu-Allah, H., El-Shorbagi, A., Abdel-Moty, S., El-Awady, R., Abdel-Alim, A. (2016). 5-Aminosalicylic acid (5-ASA): A unique anti-inflammatory salicylate. Med. Chem.,6 (5), 306–315.10.4172/2161-0444.1000361
  2. Andrews, C. G. (2011). Mesalazine (5-aminosalicylic acid) alters faecal bacterial profiles, but not mucosal proteolytic activity in diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther.,34 (3), 374–383.10.1111/j.1365-2036.2011.04732.x21671966
  3. Axelrad, J. L. (2016). Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol.,22 (20), 28.10.3748/wjg.v22.i20.4794487387227239106
  4. Baumgart, D. (2012). Crohn’s Disease and Ulcerative Colitis: From Epidemiology and Immunobiology to a Rational Diagnostic and Therapeutic Approach. Springer Science & Business Media. 695 pp.10.1007/978-1-4614-0998-4
  5. Belzer, C., Chia, L., Aalvink, S., Chamlagain, B., Piironen, V., Knol, J., de Vos, W. (2017). Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. MBio,8 (5).10.1128/mBio.00770-17560593428928206
  6. Berends, S. S. (2019). Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin. Pharmacokinet.,58 (1), 15–37.10.1007/s40262-018-0676-z632608629752633
  7. Bland, J. (2016). Intestinal microbiome, Akkermansia muciniphila, and medical nutrition therapy. Integr. Med. (Encinitas),15 (5), 14–16.
  8. Chia, L. W., Knol, J., Belzer, C. (2018). Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek,111 (6), 859–873.10.1007/s10482-018-1040-x594575429460206
  9. Cuervo, A. S.-M. (2013). Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr. Res.,33 (10), 811–816.10.1016/j.nutres.2013.05.01624074739
  10. Deloménie, C. F. (2001). Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: Evidence for highly selective acetylation of 5-aminosalicylic acid. J. Bacteriol.,183 (11), 3417–3427.10.1128/JB.183.11.3417-3427.20019964011344150
  11. Farzaneh, H., Mohammad, E. H., Gharavinia, A., Mahdavi, S. B., Akbarpour, M. J., Baghaei, A., Emami., M. H. (2017). Quality of life in inflammatory bowel disease patients: A cross-sectional study. J. Res. Med. Sci.,22, 104.10.4103/jrms.JRMS_975_16
  12. Gobert, A. P., Sagrestani, G., Wilson, E. D., Verriere, T. G., Dapoigny, M., Del’homme, C., Bernalier-Donadille, A. (2016). The human intestinal microbiota of constipated-predominant irritable bowel syndrome patients exhibits anti-inflammatory properties. Sci. Rep.,6, Article No. 39399.10.1038/srep39399
  13. Ham, M. M. (2012). Mesalamine in the treatment and maintenance of remission of ulcerative colitis. Expert Rev. Clin. Pharmacol.,5 (2), 113–123.10.1586/ecp.12.2331432822390554
  14. Herreweghen, F. A.-S.-V. (2017). In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial Microbes,8 (1), 81–96.10.3920/BM2016.001327824274
  15. Ikeda, I. T. (2007). 5-aminosalicylic acid given in the remission stage of colitis suppresses colitis-associated cancer in a mouse colitis model. Clin. Cancer Res.,13 (21), 6527–6531.10.1158/1078-0432.CCR-07-120817975166
  16. Ye, B. (2015). Mesalazine preparations for the treatment of ulcerative colitis: Are all created equal? World J. Gastrointest. Pharmacol. Ther.,6 (4), 137–144.10.4292/wjgpt.v6.i4.137
  17. Jean, L., Audrey, M., Beauchemin, C., Consrtium, O. (2018). Economic evaluations of treatments for inflammatory bowel diseases: A literature review. Can. J. Gastroenterol. Hepatol.,2018, 7439730.10.1155/2018/7439730
  18. Kaiser, G. Y. (1999). Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology,116 (3), 602–609.10.1016/S0016-5085(99)70182-4
  19. Kim, D. (2015). Gut microbiota-mediated drug-antibiotic interactions. Drug Metab. Dispos.,43 (10), 1581–1589.10.1124/dmd.115.06386725926432
  20. Laffin, M. F. (2019). A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep.,9, 12294.10.1038/s41598-019-48749-2
  21. Lopez-Siles, M., Enrich-Capó, N., Aldegue, X., Sabat-Mir, M., Duncan, S., Garcia-Gil, L., Martinez-Medina, M. (2018). Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front Cell Infect. Microbiol.,7 (8), 281.10.3389/fcimb.2018.00281613795930245977
  22. Machiels, K. J., Arijs, I., Eeckhaut, V. V., Verbeke, K., Ferrante, M. V. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut,63 (8), 1275–1283.10.1136/gutjnl-2013-304833
  23. Martín, R. C.-H. (2014). The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel Dis.,20 (3), 417–430.10.1097/01.MIB.0000440815.76627.6424418903
  24. Parada, V. D. (2019). Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol.,10, 277.10.3389/fimmu.2019.00277
  25. Perrotta, C. P. (2015). Five-aminosalicylic acid: An update for the reappraisal of an old drug. Gastroenterol. Res. Pract.,2015, 456895, 1–9.10.1155/2015/456895432079325685145
  26. Probert, C. D. (2014). Combined oral and rectal mesalazine for the treatment of mild-to-moderately active ulcerative colitis: Rapid symptom resolution and improvements in quality of life. J. Crohn’s Colitis,8 (3), 200–207.10.1016/j.crohns.2013.08.00724012063
  27. Ramirez-Alcantara, V. M. (2014). Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2. Amer. J. Physiol. Gastrointest. Liver Physiol.,306 (G), 1002–1010.10.1152/ajpgi.00389.2013404211724742986
  28. Rubin, D. (2014). Why it’s time for updated U.S. colorectal cancer prevention guidelines in inflammatory bowel disease. Gastrointest. Endosc.,80 (5), 849–851.10.1016/j.gie.2014.08.030
  29. Rubin, D. C. (2008). Colorectal cancer prevention in inflammatory bowel disease and the role of 5-aminosalicylic acid: A clinical review and update. Inflamm. Bowel Dis.,14 (2), 265–274.10.1002/ibd.2029717932965
  30. Sartor, R. W. (2017). Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroeterology.,155 (2), 327–339.10.1053/j.gastro.2016.10.012551175627769810
  31. Sasaki, M., Klapproth, J. (2012). The role of bacteria in the pathogenesis of ulcerative colitis. J. Signal Transduct., 2012, 704953.10.1155/2012/704953334863522619714
  32. Sheehan, D. S. (2017). The gut microbiota in inflammatory bowel disease. Gastroenterol. Clin. North Amer.,46, 143–154.10.1016/j.gtc.2016.09.01128164847
  33. Sonu, I. L. (2010). Clinical pharmacology of 5-ASA compounds in inflammatory bowel disease. Gastroenterol. Clin. North. Amer.,39 (3), 559–599.10.1016/j.gtc.2010.08.01120951918
  34. Thangaraju, M. C. (2009). GPR109A is a g-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res.,69, 2826–2832.10.1158/0008-5472.CAN-08-4466374783419276343
  35. van der Beek, C., Dejong, C., Troost, F., Masclee, A., Lenaerts, K. (2017). Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev.,75 (4), 286–305.10.1093/nutrit/nuw06728402523
  36. Wilson, I. N. (2017). Gut microbiome interactions with drug metabolism, efficacy and toxicity. Transl. Res.,179, 204–222.10.1016/j.trsl.2016.08.002571828827591027
  37. Xinqiang, W., Yuanbing, W., Liangmei, H., Longhuo, W., Xiangcai, W., Zhiping, L. (2018). Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer.,9 (14), 2510–2517.10.7150/jca.25324
  38. Xu, J., Chen, N., Wu, Z., Song, Y., Zhang, Y., Wu, N., Zhang, F., Ren, X., Liu, Y. (2018). 5-Aminosalicylic acid alters the gut bacterial microbiota in patients with ulcerative colitis. Frontiers Microbiol.,9, 1274.10.3389/fmicb.2018.01274600837629951050
  39. Xue, L. H. (2012). The possible effects of mesalazine on the intestinal microbiota. Aliment. Pharmacol. Ther.,36, 811–814.10.1111/apt.1203422984958
  40. Xue, L., Huang, Z., Chen, X. Z. (2012). The possible effects of mesalazine on the intestinal microbiota. Aliment. Pharmacol. Ther.,36, 811–814.10.1111/apt.12034
  41. Zhang, S. F. (2018). 5-Aminosalicylic acid downregulates the growth and virulence of Escherichia coli associated with IBD and colorectal cancer, and upregulates host anti-inflammatory activity. J. Antibiot. (Tokyo),71 (11), 950–961.10.1038/s41429-018-0081-830050110
DOI: https://doi.org/10.2478/prolas-2020-0008 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 53 - 57
Submitted on: Jan 29, 2020
|
Accepted on: Feb 25, 2020
|
Published on: May 11, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 Vanda Sargautiene, Renāte Ligere, Ineta Kalniņa, Ida Jākobsone, Vizma Nikolajeva, Aleksejs Derovs, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.