Have a personal or library account? Click to login
Physiological Responses of Wetland Species Rumex Hydrolapathum to Increased Concentration of Biogenous Heavy Metals Zn and Mn in Substrate Cover

Physiological Responses of Wetland Species Rumex Hydrolapathum to Increased Concentration of Biogenous Heavy Metals Zn and Mn in Substrate

Open Access
|Feb 2020

References

  1. Albert, R. (1975). Salt regulation in halophytes. Oecologia, 21, 57–71.10.1007/BF0034589328308604
  2. Anjum, N. A., Duarte, B., Caēador, I., Sleimi, N., Duarte, A. C., Pereira, E. (2016). Biophysical and biochemical markers of metal/metalloid impacts in salt marsh halophytes and their implications. Front. Environ. Sci.,4, 24.10.3389/fenvs.2016.00024
  3. Anjum, N. A., Singh, H. P., Khan, M. I. R., Masood, A., Per, T. S., Negi, A., Batish, D. R., Khan, N. A., Duarte, A. C., Pereira, E., Ahmad, I. (2015). Too much is bad — an appraisal of phytotoxicity of elevated plant beneficial heavy metal ions. Environ. Sci. Pollut. Res., 22, 3361–3382.10.1007/s11356-014-3849-925408077
  4. Baker, A. J. M., Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.
  5. Baker, N. R. (2006). A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol. Plant., 81, 563–570.10.1111/j.1399-3054.1991.tb05101.x
  6. Blaylock, M. J., Huang, J. W. (2000). Phytoextraction of metals. In: Raskin, I., Ensley, B. D. (eds.). Phytoremediation of Toxic Metals — Using Plants to Clean-up the Environment. Wiley, New York, pp. 53–70.
  7. Bonanno, G., Vymazal, J., Cirelli, G. L. (2018). Translocation, accumulation and bioindication of trace elements in wetland plants. Sci. Total Environ., 631/632, 252–261.10.1016/j.scitotenv.2018.03.03929525704
  8. Bothe, H., Sùomka, A. (2017). Divergent biology of facultative heavy metal plants. J. Plant Physiol., 219, 45–61.10.1016/j.jplph.2017.08.01429028613
  9. Boyd, R. S. (2004). Ecology of metal hyperaccumulation. New Phytol., 162, 563–567.10.1111/j.1469-8137.2004.01079.x33873764
  10. Broadhurst, C. L., Chaney, R. L., Davis, A. P., Cox, A., Kumar, K,, Reeves, R. D., Green, C. E. (2015). Growth and cadmium phytoextraction by Swiss chard, maize, rice, Noccaea caerulescens, and Alyssum murale in pH adjusted biosolids amended soils. Int. J. Phytoremed., 17, 25–39.10.1080/15226514.2013.82801525174422
  11. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., Lux, A. (2007). Zinc in plants. New Phytol., 173, 677–702.10.1111/j.1469-8137.2007.01996.x17286818
  12. Buscaroli, A. (2017). An overview of indexes to evaluate terrestrial plants for phytoremediation purposes (Review). Ecol. Indic., 82, 367–380.10.1016/j.ecolind.2017.07.003
  13. Capra, G. F., Coppola, E., Odierna, P., Grilli, E., Vacca, S., Buondonno, A. (2014). Occurrence and distribution of key potentially toxic elements (PTEs) in agricultural soils: A paradigmatic case study in an area affected by illegal landfills. J. Geochem. Explor., 14, 169–180.10.1016/j.gexplo.2014.06.007
  14. Clairmont, K. B., Hagar, W. G., Davis, E. A. (1986). Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant. Physiol., 80, 291–29310.1104/pp.80.1.291
  15. Elamin, O. M., Wilcox, G. E. (1986). Effect of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J. Amer. Soc. Hortic. Sci., 111, 582–587.10.21273/JASHS.111.4.582
  16. Gao, W., Du, Y., Gao, S., Ingels, J., Wang, D. (2016). Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China. J. Soils Sedim., 16, 1093–1108.10.1007/s11368-015-1314-0
  17. Guala, S. D., Vega, F. A., Covelo, E. F. (2011). Development of a model to select plants with optimum metal phytoextraction potential. Environ. Sci. Pollut. Res., 18, 997–1003.10.1007/s11356-011-0456-x21301976
  18. Gupta, N., Ram, H., Kumar, G. (2016). Mechanism of Zn absorbtion in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol., 15, 89–109.10.1007/s11157-016-9390-1
  19. Hacisalihoglu, G., Kochian, L. V. (2003). How do some plants tolerate low levels of soil Zn? Mechanisms of zinc efficency in crop plants. New Phytol., 159, 341–350.10.1046/j.1469-8137.2003.00826.x33873363
  20. Hamed, K. B., Ellouzi, H., Talbi, O. Z., Hessini, K., Slama, I., Ghnaya, T., Bosch, S. M., Savoure, A., Abdelly, C. (2013). Physiological response of halophytes to multiple stresses. Funct. Plant Biol., 40, 883–896.10.1071/FP1307432481158
  21. Han, R., Quinet, M., André, E., van Elteren, J. T., Destrebecq, F., Vogel-Mikuš, K., Cui, G., Debeljak, M., Lefčvre, I., Lutts, S. (2013). Accumulation and distribution of Zn in the shoots and reproductive structures of the halophyte plant species Kosteletzkya virginica as a function of salinity. Planta238, 441–457.10.1007/s00425-013-1903-323728368
  22. Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K., Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol. Plant., 32, 979–986.10.1007/s11738-010-0487-9
  23. Javed, M. T., Stoltz, E., Lindberg, S., Greger, M. (2013). Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements. Environ. Sci. Pollut. Res., 20, 1876–1880.10.1007/s11356-012-1413-z23274805
  24. Jin, X. F., Yang, X. E., Islam, E., Liu, D., Mahmood, Q., Li, H., Li, J. (2008). Ultrastructural changes, zinc hyperaccumulation and its relation with anti-oxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol. Biochem. 46, 997–1006.10.1016/j.plaphy.2008.06.01218693116
  25. Kalaji, H. M., Račková, L., Paganová, V., Swoczyna, T., Rusinowski, S., Sitko, K. (2018). Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ. Exp. Bot., 152, 149–157.10.1016/j.envexpbot.2017.11.001
  26. Kan, X., Ren, J., Chen, T., Cui, M., Li, C., Zhou, R., Zhang, Y., Liu, H., Dexiang, D., Yin, Z. (2017). Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ. Exp. Bot.,140, 56–64.10.1016/j.envexpbot.2017.05.019
  27. Küpper, H., Zhao, F. J., McGrath, S. P. (1999). Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol., 119, 305–311.10.1104/pp.119.1.305
  28. Li, Q., Chen, L.-S., Jiang, H.-X., Tang, N., Yang, L.-T., Lin, Z.-H., Li, Y., Yang, G.-H. (2010). Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biol.,10, 42.10.1186/1471-2229-10-42
  29. Li, T.-Q., Yang, Z. E., Yang, J.-Y., He, Z.-L. (2006). Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere, 16, 616–623.10.1016/S1002-0160(06)60095-7
  30. Liang, H. M., Lin, T. H., Chiou, J. M., Yeh, K. C. (2009). Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ. Pollut.,157, 1945–1952.10.1016/j.envpol.2008.11.05219268408
  31. Liang, L., Liu, W., Sun, Y., Huo, X., Li, S., Zhou, Q. (2017). Phytoremediation of heavy metal contaminated saline soils using halophytes: Current progress and future perspectives. Environ. Res.,25, 269–281.10.1139/er-2016-0063
  32. Liu, J., Shang, W., Zhang, Zhu, Y., Yu, K. (2014). Mn accumulation and tolerance in Celosia argentea Linn.: A new Mn-hyperaccumulating plant species. J. Hazard. Mater., 267, 136–141.10.1016/j.jhazmat.2013.12.05124444455
  33. Liu, P., Tang, X., Gong, C., Xu, G. D. (2010). Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant Soil, 335, 285–395.10.1007/s11104-010-0427-x
  34. Loneragan, J. F. (1988). Distribution and movement of manganese in plants. In: Graham, R. D., Hannam, R. J., Uren, N. C. (eds.). Manganese in Soils and Plants. Developments in Plant and Soil Sciences, Vol 33. Springer, Dordrecht, pp. 113–124.10.1007/978-94-009-2817-6_9
  35. Longnecker, N. E., Robson, A. D. (1993). Distribution and transport of zinc in plants. In: Robson, A. D. (ed.). Zinc in Soils and Plants. Developments in Plant and Soil Sciences, Vol 55. Springer, Dordrecht, pp. 79–91.10.1007/978-94-011-0878-2_6
  36. Lutts, S., Levčvre, I. (2015). How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas. Ann. Bot., 115, 509–528.10.1093/aob/mcu264433261425672360
  37. Masarovičová, E., Králová, K., Kummerová, M. (2010). Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiol. Plant., 32, 823–829.10.1007/s11738-010-0474-1
  38. Mateos-Naranjo, E., Redondo-Gómez, S., Cambrollé, J., Luque, T., Fugeroa, M. E. (2008). Growth and photosynthetic responses to zinc stress of an invasive cordgrass Spartina densiflora. Plant Biol.,10, 754–762.10.1111/j.1438-8677.2008.00098.x18950433
  39. Mitchell, R. G., Spliethoff, H. M., Ribaudo, L. N., Lopp, D. M., Shayler, H. A., Marquez-Bravo, L. G., Lambert, V. T., Ferenz, G. S., Russell-Anelli, J. M., Stone, E. B., McBride, M. B. (2014). Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions. Environ. Pollut., 187, 162–169.10.1016/j.envpol.2014.01.007398394924502997
  40. Moray, C., Goolsbay, E. W., Bromham, L. (2016). The phylogenetic association between salt tolerance and heavy metal hyperaccumulation in Angiosperms. Evol. Biol., 43, 119–130.10.1007/s11692-015-9355-2
  41. Naidu, R., Oliver, D., McConnell, S. (2003). Heavy metal phytotoxicity in soils. In: Proceedings of the Fifth National Workshop on the Assessment of Site Contamination. Environment Protection & Heritage Council, Adelaide, pp. 235–241.
  42. Osvalde, A. (2011). Optimization of plant mineral nutrition revisited: The roles of plant requirements, nutrient interactions, and soil properties in fertilization management. Environ. Exp. Biol., 9, 1–8.
  43. Peng, D., Shafi, M., Wang, Y., Li, S., Yan, W., Chen, J., Ye, Z., Liu, D. (2015). Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens. Environ. Sci. Pollut. Res., 22, 14983–14992.10.1007/s11356-015-4692-326002363
  44. Pinto, E., Aguiar, A. R. M., Ferreura I. M. P. L. V. O. (2014). Influence of soil chemistry and plant physiology in the phytoremediation of Cu, Man, and Zn. Crit. Rev. Plant Sci., 33, 351–373.10.1080/07352689.2014.885729
  45. Rascio, N., Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci.,180, 169–181.10.1016/j.plantsci.2010.08.01621421358
  46. Reeves, R. D., van der Ent, A., Baker, A. J. M. (2018). Global distribution and ecology of hyperaccumulator plants. In: van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds.). Agromining: Farming for Metals. Mineral Resource Reviews. Springer International Publishing, Cham, pp. 75–92.10.1007/978-3-319-61899-9_5
  47. Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., van der Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol., 218, 407–411.10.1111/nph.1490729139134
  48. Reichman, S. (2002). The Responses of Plant to Metal Ttoxicity: A Review Focusing on Copper, Manganese and Zinc. Australian Minerals & Energy Environment Foundation, Melbourne. 54 pp.
  49. Ren, F., Liu, T., Liu, H., Hu, B. (1993). Influence of zinc on the growth, distribution of elements, and metabolism of one-year old American ginseng plants. J. Plant Nutr., 16, 393–405.10.1080/01904169309364539
  50. Samsone, I., Ievinsh, G. (2018). Different plant species accumulate various concentration of Na+ in a sea-affected coastal wetland during a vegetation season. Environ. Exp. Biol., 16, 117–127.10.22364/eeb.16.11
  51. Santos, E. F., Santini, J. M. K., Paixćo, A. P., Jśnior, E. F., Lavres, J., Campos, M., dos Reis, A. R. (2017). Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol. Biochem., 113, 6–19.10.1016/j.plaphy.2017.01.02228157580
  52. Sghaier, D. B., Duarte, B., Bankaji, I., Caēador, I., Sleimi, N. (2015). Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl. J. Photochem. Photobiol. B Biol.,149, 204–214.10.1016/j.jphotobiol.2015.06.00326093232
  53. Shen, Z. G., Zhao, F. J., McGrath, S. P. (1997). Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyper-accumulator Thlaspi ochroleucum. Plant Cell Environ., 20, 898–906.10.1046/j.1365-3040.1997.d01-134.x
  54. Sruthi, P., Shackira, A. M., Puthur, J. T. (2017). Heavy metal detoxification mechanisms in halophytes: An overview. Wetlands Ecol. Manag., 25, 129–148.10.1007/s11273-016-9513-z
  55. Strasser, R. J., Srivastava, A., Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterise and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P. (eds.). Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor & Francis, London, pp. 445–483
  56. Tang, S., Fang, Y. (2012). Copper accumulation by Polygonum micro-cephalum D. Don and Rumex hastatus D. Don from copper mine spoils in Yunnan Province, P. R. China. Environ. Geol., 40, 902–907.10.1007/s002540100256
  57. Tang, Y.-T., Qiu, R.-L., Zeng, X-.W., Ying, R.-R., Yu, F.-M., Zhou, X.-Y. (2009). Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ. Exp. Bot., 66, 126–134.10.1016/j.envexpbot.2008.12.016
  58. Van Oosten, M. J., Maggio, A. (2015). Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ. Exp. Bot., 111, 135–146.10.1016/j.envexpbot.2014.11.010
  59. Visioli, G., Marmiroli, N. (2013). The proteomics of heavy metal hyperaccumulation in plants. J. Proteom.,79, 133–145.10.1016/j.jprot.2012.12.00623268120
  60. Vondráčková, S., Hejcman, M., Száková, J., Müllerová, V., Tlustoš, P. (2014). Soil chemical properties affect the concentration of elements (N, P, K, Ca, Mg, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and their distribution between organs of Rumex obtusifolius. Plant Soil, 379, 231–245.10.1007/s11104-014-2058-0
  61. Vondráčková, S., Száková, J., Drábek, O., Tejnecký, V., Hejcman, M., Müllerová, V., Tlustoš, P. (2015). Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular weight organic acids content and soil pH. PLOS One, 10, e0123351.10.1371/journal.pone.0123351440010925880431
  62. Wang, A. S., Angle, J. S., Rufus, L. C., Delorme, T. A., Reeves, R. D. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulencens. Plant Soil, 281, 325–337.10.1007/s11104-005-4642-9
  63. Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W., Lin, Z. P. (2009). The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 75, 1468–1476.10.1016/j.chemosphere.2009.02.03319328518
  64. Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J. M., Lin, Q., Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ. Pollut., 131, 393–399.10.1016/j.envpol.2004.03.01115261402
  65. Yang, J., Ye, Z. (2009). Metal accumulation and tolerance in wetland plants. Front. Biol. China, 4, 282–288.10.1007/s11515-009-0024-7
  66. Yang, W., Li, H., Zhang, T., Sen, L., Ni, W. (2014). Classification and identification of metal-accumulating plant species by cluster analysis. Environ. Sci. Pollut. Res., 21, 10626–10637.10.1007/s11356-014-3102-624888623
  67. Ye, M., Liao, B., Li, J. T., Mengoni, A., Hu, M., Luo, W. C., Shu, W. S. (2012). Contrasting patterns of genetic divergence in two sympatric pseudo-metallophytes: Rumex acetosa L. and Commelina communis L. BMC Evol. Biol., 12, 84.10.1186/1471-2148-12-84
  68. Zhuang, P., Wang, Q. W., Wang, H. B., Shu, W. S. (2007). Phytoextraction of heavy metals by eight plant species in field. Water Air Soil Pollut., 184, 235–242.10.1007/s11270-007-9412-2
DOI: https://doi.org/10.2478/prolas-2020-0006 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 35 - 47
Submitted on: Nov 21, 2018
Accepted on: Mar 11, 2019
Published on: Feb 27, 2020
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 Gederts Ievinsh, Elīna Dišlere, Andis Karlsons, Anita Osvalde, Māra Vikmane, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.