Have a personal or library account? Click to login
Limit Theorems for Bivariate Generalised Order Statistics in Stationary Gaussian Sequences with Random Sample Sizes Cover

Limit Theorems for Bivariate Generalised Order Statistics in Stationary Gaussian Sequences with Random Sample Sizes

Open Access
|Dec 2019

References

  1. Abd Elgawad, M. A., Barakat, H. M. ,Yan, T. (2019a). Bivariate limit theorems for record values based on random sample sizes. Sankhya A: Indian J. Statist. Available from: https://doi.org/10.1007/s13171-019-00167-2 (accessed 25.10.2019).10.1007/s13171-019-00167-2(accessed25.10.2019)
  2. Abd Elgawad, M. A., Barakat, H. M., Xiong, S. (2019b). Limit distributions of random record model in a stationary Gaussian sequence. Comm. Statist.- Theory Meth.https://doi.org/10.1080/03610926.2018.1554131 (accessed 25.10.2019).10.1080/03610926.2018.1554131(accessed25.10.2019)
  3. Barakat, H. M. (2007). Limit theory of generalized order statistics. J. Statist. Plann. Inf., 137 (1), 1–11.10.1016/j.jspi.2005.10.003
  4. Barakat, H. M. (2018). The asymptotic dependence structural and some functions of generalized order statistics in a stationary Gaussian sequence. Math. Rep. Available from: https://www.researchgate.net/publication/329268250_The_asymptotic_dependence_structure_and_some_functions_of_generalized_order_statistics_in_a_stationary_Gaussian_sequence
  5. Barakat, H. M., Abd Elgawad, M. A. (2019). Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications. Math. Slovaca, 69 (3), 707–720.10.1515/ms-2017-0259
  6. Barakat, H. M., Nigm, E. M. (1991). Weak limits of random quasimidranges. Microelectron. Reliab., 31 (5), 941–953.10.1016/0026-2714(91)90039-A
  7. Barakat, H. M., Nigm, E. M., Abd Elgawad, M. A. (2014). Limit theory for joint generalized order statistics. REVSTAT. Stat. J., 12 (3), 1–22.
  8. Barakat, H. M., Nigm, E. M., Abo Zaid, E. O. (2016a). Limit distributions of order statistics with random indices in a stationary Gaussian sequence. Comm. Statist.Theory Meth., 46 (14), 7099–7113.10.1080/03610926.2016.1148732
  9. Barakat, H. M., Nigm, E. M., Abo Zaid, E. O. (2016b). Generalized order statistics with random indices in a stationary Gaussian sequence. Appl. Math. Inf. Sci., 10 (3), 1081–1090.10.18576/amis/100326
  10. Cramer, E. (2003). Contributions to Generalized Order Statistics. Habililationsschrift, Reprint, University of Oldenburg.
  11. De Haan, L. (1970). On Regular Variation and its Application to the Week Convergence of Sample Extremes. Mathematisch Centrum, Amsterdam. 124 pp.
  12. Kamps, U. (1995). A Concept of Generalized Order Statistics. Teubner, Stuttgart. 210 pp.10.1007/978-3-663-09196-7
  13. Nasri-Roudsari, D. (1996). Extreme value theory of generalized order statistics. J. Statist. Plann. Inf., 55, 281–297.10.1016/S0378-3758(95)00200-6
  14. Nasri-Roudsari, D., Cramer, E. (1999). On the convergence rates of extreme generalized order statistics. Extremes, 2, 421–447.10.1023/A:1009904316589
  15. Vasudeva, R., Moridani, A. Y. (2010). Limit distributions of the extremes of a random number of random variables in a stationary Gaussian sequence. ProbStat Forum, 3, 78–90.
DOI: https://doi.org/10.2478/prolas-2019-0080 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 525 - 532
Submitted on: Dec 12, 2018
Accepted on: Jul 23, 2019
Published on: Dec 26, 2019
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 Fatma Hashem Essawe, Mohamed Abd Elgawad, Haroon Mohamed Barakat, Hui Zhao, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.