Have a personal or library account? Click to login
High-Temperature X-Ray Diffraction and Fluorescence Spectra of SnSe Single Crystal Cover

References

  1. Antunez, P. D., Buckley, J. J., Brutchey, R. L. (2011). Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale, 3, No. 6, 2399–2411.2146504310.1039/c1nr10084j21465043
  2. Chekini, M., Filter, R., Bierwagen, J., Cunningham, A., Rockstuhl, C., Burgi, T. (2015). Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays. J. Appl. Phys.,118, 23310710.1063/1.4938025
  3. Chernozatonskiy, L. A., Artyukh, A. A. (2018). Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications [Чернозатонский, Л. A., Артюх, A. A. Квазидвумерные дихалько- гениды переходных металлов: структура, синтез, свойства и применение]. Успехи физических наук [Advances in Physical Sciences],188 (1), 3–30 (in Russian).10.3367/UFNr.2017.02.038065
  4. Dai, X., Liang, Y., Zhao, Y., Gan, S., Jia, Y., Xiang, Y. (2019). Sensitivity enhancement of a surface plasmon resonance with tin selenide (SnSe). Allotropes Sensors,19, 173.10.3390/s19010173633905130621301
  5. Filho, P. E. C., Cardoso, A. L. C., Pereira, M. I. A., et al. (2016). CdTe quantum dots as fluorescent probes to study transferrin receptors in glioblastoma cells. Biochimica et Biophysica Acta (BBA): General Subjects, 1860 (1), Part A, 28–35.10.1016/j.bbagen.2015.09.02126434535
  6. Flessau, S., Wolter, C., Pöselt, E., Kröger, E., Mews, A., Kipp, T. (2014). Fluorescence spectroscopy of individual semiconductor nanoparticles in different ethylene glycols. Phys. Chem. Chem. Phys., 16, 10444–10455.2478887810.1039/C4CP00443D
  7. Franzman, M. A., Schlenker, C. W., Thompson, M. E., Brutchey, R. L. (2010). Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Amer. Chem. Soc., 885, 4060–4061.10.1021/ja100249m20201510
  8. Huseynov, J. I., Mamedova, R. F., Abbasov, I. I., Askerov, D. J. (2018). Spektry fluorestsensii monokrisstallov SnSe. In: Applied Optics Conference, St. Petersburg, 19–21.12.2018, pp. 81–85.
  9. Im, H. S., Lim, Y.R., Cho, Y.J., Park, J., Cha, E.H., Kang, H.S. (2014). Germanium and tin selenide nanocrystals for high-capacity lithium ion batteries: Comparative phase conversion of germanium and tin. J. Phys. Chem. C, 118 (38), 21884–21888.10.1021/jp507337c
  10. Indirajith, R., Rajalakshmi, M., Gopalakrishnan, R., Ramamurthi, K. (2011). Effects of annealing on thermally evaporated SnSe thin films. Ferroelectrics, 413 (1), 108–114.10.1080/00150193.2011.551090
  11. Johnson, J. B., Jones, H., Latham, B. S., Parker, J. D., Engelken, R. D., Barber, C. (1999). Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films. Semicond. Sci. Technol., 14 (6), 501.10.1088/0268-1242/14/6/303
  12. Lashkarev, V. E., Lyubchenko, A. A., Sheykman, M. K. (1981). Unbalanced Processes in Photoconductors [Лашкарев, В. E., Любченко, A. В., Шейнкман, М. К. Неравновесные процессы в фотопроводниках]. Naukova dumka, Kiev, 264 pp. (in Russian).
  13. Loa, I., Popuri, S. R., Fortes, A. D., Bos, J. W. G. (2018). Critical mode and band-gap-controlled bipolar thermoelectric properties of SnSe. Phys. Rev. Materials, 2, 085405.10.1103/PhysRevMaterials.2.085405
  14. Nariya B., Dasadia A., Jani A. (2013). Growth of Tin Monosulphide and Tin Monoselenide Single Crystals. LAP, Saarbrücken. 128 pp.
  15. Oleynikov, V. A., Sukhanova, A. V., Nabiyev, I. R.. (2007). Fluorestsentnye poluprovodnikovye nanokristally v biologii i medisine. Rossiyskiye nanotexnologii, 2 (1–2), 160–173.
  16. Pratip, K. Chattopadhyay, Stephen, P. Perfetto, Joanne,Y., Roederer, M. (2010). The use of quantum dot nanocrystals in multicolor flow cytometry. WIREs Nanomed. Nanobiotechnol., 2, 334–348.10.1002/wnan.7520101649
  17. Vorobjev, I. A., Rafalovskaya-Orlovskaya, E. P., Gladkikh, A. A., Potashnitsova, D. M., Barteneva, N. S. (2011). Fluorescent semiconductor nanocrystals in microscopy and flow cytometry. Cell Tissue Biol.,5 (4), 321–331.10.1134/S1990519X11040134
  18. Wang, C. W., Xia, Y.Y.Y., Tian, Z. et al. (2017). Photoemission study of the electronic structure of valence band convergent SnSe. Phys. Rev. B, 96 (16), 165118.10.1103/PhysRevB.96.165118
  19. Wiedemeier, H., Schnering, (1978). Refinement of the structures of GeS, GeSe, SnS and SnSe. Z. Kristallogr.,148, 295–303.10.1524/zkri.1978.148.3-4.295
  20. Xiaolong, X., Qingjun, S., Haifeng, W. et al. (2017). In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. Appl. Mater. Interfaces, 9, 12601–12607.10.1021/acsami.7b0078228318225
  21. Yao, G. G. Zheng, Z., Yang, G. (2018). Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy driven water evaporation. Nanoscale, 10 (6).2936796110.1039/C7NR09229F
  22. Zhou, Y. Li, W., Wu, M., Zhao, L.-D., He, J., S-H.Wei, S-H., Huang, L. (2018). Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study. Phys. Rev. B,97, 245202.10.1103/PhysRevB.97.245202
DOI: https://doi.org/10.2478/prolas-2019-0079 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 519 - 524
Submitted on: Jan 28, 2019
Accepted on: Sep 9, 2019
Published on: Dec 26, 2019
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 Jahangir Huseynov, Rena Mamedova, Ibrahim Abbasov, Dunyameddin Askerov, Khaver Sadig, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.