Have a personal or library account? Click to login

References

  1. Akahori, H., Tsujino, T., Masuyama, T., Ishihara, M. (2018). Mechanisms of aortic stenosis. J. Cardiol., 71 (3), 215–220.10.1016/j.jjcc.2017.11.00729258711
  2. Ali, O. A., Chapman, M., Nguyen, T. H., Chirkov, Y. Y., Heresztyn, T., Mundisugih, J., Horowitz, J. D. (2014). Interactions between inflammatory activation and endothelial dysfunction selectively modulate valve disease progression in patients with bicuspid aortic valve. Heart, 100 (10), 800–805.10.1136/heartjnl-2014-30550924743038
  3. Chen, B., Meng, L., Shen, T., Gong, H., Qi, R., Zhao, Y., Sun, J., Bao, L., Zhao, G. (2017). Thioredoxin attenuates oxidized low-density lipoprotein induced oxidative stress in human umbilical vein endothelial cells by reducing NADPH oxidase activity. Biochem. Biophys. Res. Commun., 490 (4), 1326–1333.10.1016/j.bbrc.2017.07.02328688762
  4. Cheng, P., Zhang, F., Yu, L., Lin, X., He, L., Li, X., Lu, X., Yan, X., Tan, Y., Zhang, C. (2016). Physiological and pharmacological roles of FGF21 in cardiovascular diseases. J. Diabetes Res., 2016, 1540267.10.1155/2016/1540267487623227247947
  5. Couchie, D., Vaisman, B., Abderrazak, A., Mahmood, D. F. D., Hamza, M. M., Canesi, F., Diderot, V., El Hadri, K., Nègre-Salvayre, A., Le Page, A., Fulop, T., Remaley, A. T., Rouis, M. (2017). Human plasma thioredoxin-80 increases with age and in ApoE-/-mice induces inflammation, angiogenesis, and atherosclerosis. Circulation, 136 (5), 464–475.10.1161/CIRCULATIONAHA.117.027612836989328473446
  6. El Hadri, K., Mahmood, D. F., Couchie, D., Jguirim-Souissi, I., Genze, F., Diderot, V., Syrovets, T., Lunov, O., Simmet, T., Rouis, M. (2012). Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 32 (6), 1445–1452.10.1161/ATVBAHA.112.24933422516068
  7. Fondard, O., Detaint, D., Iung, B., Choqueux, C., Adle-Biassette, H., Jarraya, M., Hvass, U., Couetil, J. P., Henin, D., Michel, J. B., Vahanian, A., Jacob, M. P. (2005). Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J., 26 (13), 1333–1341.10.1093/eurheartj/ehi24815827062
  8. Heymans, S., Schroen, B., Vermeersch, P., Milting, H., Gao, F., Kassner, A., Gillijns, H., Herijgers, P., Flameng, W., Carmeliet, P., Van de Werf, F., Pinto, Y. M., Janssens, S. (2005). Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation, 112 (8), 1136–1144.10.1161/CIRCULATIONAHA.104.51696316103240
  9. Ji, Q., Lin, Y., Liang, Z., Yu, K., Liu, Y., Fang, Z., Liu, L., Shi, Y., Zeng, Q., Chang, C., Chai, M., Zhou, Y. (2014). Chemerin is a novel biomarker of acute coronary syndrome but not of stable angina pectoris. Cardiovasc. Diabetol., 13, 145.10.1186/s12933-014-0145-4
  10. Kammerer, A., Staab, H., Herberg, M., Kerner, C., Klöting, N., Aust, G. (2018). Increased circulating chemerin in patients with advanced carotid stenosis. BMC Cardiovasc. Disord., 18 (1), 65.10.1186/s12872-018-0803-7589936429653511
  11. Kaur, J. L., Mattu, H. S., Chatha, K., Randeva, H. S. (2018). Chemerin in human cardiovascular disease. Vascul. Pharmacol., 110, 1–6.10.1016/j.vph.2018.06.01830016719
  12. Khan, A. A., Alsahli, M. A., Rahmani, A. H. (2018). Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Med. Sci. (Basel), 6 (2). pii: E33.10.3390/medsci6020033
  13. Kim, J. B., Kobayashi, Y., Kuznetsova, T., Moneghetti, K. J., Brenner, D. A., O’Malley, R., Dao, C., Wu, J. C., Fischbein, M., Craig Miller, D., Yeung, A. C., Liang, D., Haddad, F., Fearon, W. F. (2018). Int. J. Cardiol., 270, 83–88.10.1016/j.ijcard.2018.05.020
  14. Kunimoto, H., Kazama, K., Takai, M., Oda, M., Okada, M., Yamawaki, H. (2015). Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure. Amer. J. Physiol. Heart Circ. Physiol., 309 (5), H1017–H1028.10.1152/ajpheart.00820.201426254337
  15. Lenart-Lipińska, M., Duma, D., Hałabiś, M., Dziedzic, M., Solski, J. (2016). Fibroblast growth factor 21 — a key player in cardiovascular disorders? Horm. Mol. Biol. Clin. Investig., 30 (2).10.1515/hmbci-2016-0026
  16. Lurins, J., Lurina, D., Tretjakovs, P., Mackevics,V., Lejnieks, A., Rapisarda, V., Baylon, V. (2018). Increased serum chemerin level to predict early onset of aortic valve stenosis. Biomed. Rep., 8 (1), 31–36.10.3892/br.2017.1010
  17. Münch, J., Avanesov, M., Bannas, P., Säring, D., Krämer, E., Mearini, G., Carrier, L., Suling, A., Lund, G., Patten, M. (2016). Serum matrix metalloproteinases as quantitative biomarkers for myocardial fibrosis and sudden cardiac death risk stratification in patients with hypertrophic cardiomyopathy. J. Card. Fail., 22 (10), 845–850.10.1016/j.cardfail.2016.03.01027018569
  18. Nussbaum, C., Klinke, A., Adam, M., Baldus, S., Sperandio, M. (2013). Myeloperoxidase: A leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid. Redox Signal, 18 (6), 692–713.10.1089/ars.2012.478322823200
  19. Perrotta, I., Sciangula, A., Aquila, S., Mazzulla, S. (2016). Matrix metalloproteinase-9 expression in calcified human aortic valves: A histopathologic, immunohistochemical, and ultrastructural study. Appl. Immunohistochem. Mol. Morphol., 24 (2), 128–137.10.1097/PAI.000000000000014425390353
  20. Planavila, A., Redondo-Angulo, I., Ribas, F., Garrabou, G., Casademont, J., Giralt, M., Villarroya, F. (2015a). Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc. Res., 106 (1), 19–31.10.1093/cvr/cvu26325538153
  21. Planavila, A., Redondo-Angulo, I., Villarroya, F. (2015b). FGF21 and cardiac physiopathology. Front. Endocrinol. (Lausanne), 6, 133.10.3389/fendo.2015.00133455339726379627
  22. Savic-Radojevic, A., Pljesa-Ercegovac, M., Matic, M., Simic, D., Radovanovic, S., Simic, T. (2017). Novel biomarkers of heart failure. Adv. Clin. Chem., 79, 93–152.10.1016/bs.acc.2016.09.00228212715
  23. Spiroglou, S. G., Kostopoulos, C. G., Varakis, J. N., Papadaki, H. H. (2010). Adipokines in periaortic and epicardial adipose tissue: Differential expression and relation to atherosclerosis. J. Atheroscler. Thromb., 17 (2), 115–130.10.5551/jat.173520145358
  24. Stein, J. H, Korcarz, C. E., Hurst, R. T., Lonn, E., Kendall, C. B., Mohler, E. R., Najjar, S. S., Rembold, C. M., Post, W. S.; American Society of Echocardiography Carotid Intima-Media Thickness Task Force (2008). Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. J. Amer. Soc. Echocardiogr., 21, 93–111.10.1016/j.echo.2007.11.01118261694
  25. Vahanian, A., Iung, B. (2012). The new ESC/EACTS guidelines on the management of valvular heart disease. Arch. Cardiovasc. Dis., 105, 465–467.10.1016/j.acvd.2012.09.00123062477
  26. van der Veen, B. S., de Winther, M. P., Heeringa, P. (2009). Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxid. Redox Signal, 11 (11), 2899–2937.10.1089/ars.2009.253819622015
  27. Wada, S., Sugioka, K., Naruko, T., Kato, Y., Shibata, T., Inoue, T., Inaba, M., Ohsawa, M., Yoshiyama, M., Ueda, M. (2013). Myeloperoxidase and progression of aortic valve stenosis in patients undergoing hemodialysis. J. Heart Valve Dis., 22 (5), 640–647.
  28. Yamawaki, H., Kameshima, S., Usui, T., Okada, M., Hara. Y. (2012). A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells. Biochem. Biophys. Res. Commun., 423 (1), 152–157.10.1016/j.bbrc.2012.05.10322634313
  29. Yao, Q., Song, R., Ao, L., Cleveland, J. C Jr., Fullerton, D. A., Meng, X. (2017). Neurotrophin 3 upregulates proliferation and collagen production in human aortic valve interstitial cells: a potential role in aortic valve sclerosis. Amer. J. Physiol. Cell Physiol., 312 (6), C697–C706.10.1152/ajpcell.00292.2016549458928356268
  30. Zhang, H., Liu, Q., Lin, J. L., Wang, Y., Zhang, R. X., Hou, J. B., Yu, B. (2018). Recombinant human thioredoxin-1 protects macrophages from oxidized low-density lipoprotein-induced foam cell formation and cell apoptosis. Biomol. Ther. (Seoul),26 (2), 121–129.10.4062/biomolther.2016.275583949028554199
DOI: https://doi.org/10.2478/prolas-2019-0016 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 100 - 106
Submitted on: Nov 5, 2018
Accepted on: Jan 3, 2019
Published on: Apr 7, 2019
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2019 Pēteris Tretjakovs, Juris Hofmanis, Dace Hofmane, Gita Krieviņa, Leons Blumfelds, Vitolds Mackēvičs, Aivars Lejnieks, Guntis Bahs, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.