Achuthan, S., Santhoshkumar, T. R., Prabhakar, J., Nair, S. A., Pillai, M. R. (2011). Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J. Biol. Chem., 286 (43), 37813–37829.10.1074/jbc.M110.200675
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA,100 (7), 3983–3988.10.1073/pnas.0530291100
Anonymous (2018). R: A Language and Environment for Statistical Computing. R foundation for statistical computing, Vienna. Available from: https://www.R-project.org/ (accessed 20.01.2019).
Brooks, D. L. P., Schwab, L. P., Krutilina, R., Parke, D. N., Sethuraman, A., Hoogewijs, D., Schörg, A., Gotwald, L., Fan, M., Wenger, R. H., Seagroves, T. N. (2016). ITGA6 is directly regulated by hypoxia- inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol. Cancer, 15, 26.10.1186/s12943-016-0510-x
Cortós-Funes, H., Coronado, C. (2007). Role of anthracyclines in the era of targeted therapy. Cardiovasc. Toxicol.,7 (2), 56–60.10.1007/s12012-007-0015-3
Dasari, S., Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol.,740, 364–378.10.1016/j.ejphar.2014.07.025
Dean, M., Hamon, Y., Chimini, G. (2001). The human ATP-binding cassette transporter superfamily. J. Lipid Res.,42 (7), 1007–1017.10.1016/S0022-2275(20)31588-1
Deng, X., Apple, S., Zhao, H., Song, J., Lee, M., Luo, W., Wu, X., Chung, D., Pietras, R. J., Chang, H. R. (2017) CD24 expression and differential resistance to chemotherapy in triple-negative breast cancer. Oncotarget,8 (24), 38294–38308.10.18632/oncotarget.16203550353328418843
El-Badawy, A., Ghoneim, M. A., Gabr, M. M., Salah, R. A., Mohamed, I. K., Amer, M., El-Badri, N. (2017). Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state. Stem Cell Res. Ther., 8 (1), 254.10.1186/s13287-017-0709-9568880329115987
Erenpreisa, J., Ivanov, A., Wheatley, S. P., Kosmacek, E. A., Ianzini, F., Anisimov, A. P., Mackey, M., Davis, P. J., Illidge, T. M. (2008). Endopolyploidy in irradiated p53-deficient tumour cell lines: Persistence of cell division activity in giant cells expressing Aurora-B kinase. Cell Biol. Int.,32 (9), 1044–1056.10.1016/j.cellbi.2008.06.003
Fei, F., Zhang, D., Yang, Z., Wang, S., Wang, X., Wu, Z., Wu, Q., Zhang, S. (2015). The number of polyploid giant cells and epithelial-mesenchymal transition-related proteins are associated with invasion and metastasis un human breast cancer. J. Exp. Clin. Cancer Res.,34, 158.10.1186/s13046-015-0277-8
Freshney, R. I. (2011). Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Hoboken, NY.: Wiley-Blackwell. 728 pp.10.1002/9780470649367
Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol.,57 (7), 727–741.10.1016/S0006-2952(98)00307-4
Gottesman, M. M., Fojo, T., Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer,2 (1), 48–58.10.1038/nrc70611902585
Hafner, M., Niepel, M., Chung, M., Sorger, P. K. (2016). Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods, 13 (6), 521–527.10.1038/nmeth.3853488733627135972
Hafner, M., Niepel, M., Sorger, P. K. (2017). Alternative drug sensitivity metrics improve preclinical cancer pharmacogenomics. Nat. Biotechnol.,35 (6), 52–54.10.1038/nbt.3882566813528591115
Holohan, C., Van Schaeybroeck, S., Longley, D. B., Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 13 (10), 714–726.10.1038/nrc359924060863
Huang, Z. J., You, J., Luo, W. Y., Chen, B. S., Feng, Q. Z., Wu, B. L., Jiang, L., Luo, Q. (2015). Reduced tumorigenicity and drug resistance through the downregulation of octamer-binding protein 4 and Nanog transcriptional factor expression in human breast stem cells. Mol. Med. Rep.,11 (3), 1647–1654.10.3892/mmr.2014.2972427031925405855
Hwang-Verslues, W. W., Kuo, W. H., Chang, P. H., Pan, C. C., Wang, H. H., Tsai, S. T., Jeng, Y. M., Shew, J. Y., Kung, J. T., Chen, C. H., Lee, E. Y., Chang, K. J., Lee, W. H. (2009). Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS ONE, 4 (12), e8377.10.1371/journal.pone.0008377279343120027313
Jia, D., Tan, Y., Liu, H., Ooi, S., Li, L., Wright, K., Bennett, S., Addison, C.L., Wang, L. (2016). Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget,7 (1), 771–785.10.18632/oncotarget.5819480803226506421
Kibria, G., Hatakeyama, H., Akiyama, K., Hida, K., Harashima, H. (2014). Comparative study of the sensitivities of cancer cells to doxorubicin, and relationships between the effect of the drug-efflux pump P-gp. Biol. Pharm. Bull., 37 (12), 1926–1935.10.1248/bpb.b14-0052925451842
Kim, W., Ryu, C. J. (2017). Cancer stem cell surface markers on normal stem cells. BMB Rep.,50 (6), 285–298.10.5483/BMBRep.2017.50.6.039549813928270302
Leggett, S. E., Sim, J. Y., Rubins, J. E., Neronha, Z. J., Williams, K., Wong, I. Y. (2016). Morphological single cell profiling of the epithelial-mesenchymal transition. Integr. Biol. (Camb).,8 (11), 1133–1144.10.1039/C6IB00139D541736227722556
Liang, Y., Zhong, Z., Huang, Y., Deng, W., Cao, J., Tsao, G., Liu, Q., Pei, D., Kang, T., Zeng, Y.X. (2010). Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. J. Biol. Chem., 285 (7), 4931–4940.10.1074/jbc.M109.048397283609720007324
Ling, G. Q., Chen, D. B., Wang, B. Q., Zhang, L. S. (2012). Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncol. Lett.,4 (6), 1264–1268.10.3892/ol.2012.916350671723197999
Liu, P., Kumar, I. S., Brown, S., Kannappan, V., Tawari, P. E., Tang, J. Z., Jiang, W., Armesilla, A. L., Darling, J. L., Wang, W. (2013). Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Brit. J. Cancer, 109 (7), 1876–1885.10.1038/bjc.2013.534379018424008666
Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 25 (4), 402–408.10.1006/meth.2001.1262
McDermott, M., Eustace, A. J., Busschots, S., Breen, L., Crown, J., Clynes, M., O’Donovan N., Stordal, B. (2014). In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: A practical guide with case studies. Front. Oncol., 4, 40.10.3389/fonc.2014.00040394478824639951
Mckenna, M. T., Weis, J. A., Barnes, S. L., Tyson, D. R., Miga, I., Quaranta, V., Yankeelov, T. E. (2017). Modeling approach for the study of doxorubicin treatment in triple negative breast cancer. Sc. Rep., 7 (1), 5725.10.1038/s41598-017-05902-z
Mirzayans, R., Andrais, B., Murray, D. (2018). Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers,10, 118.10.3390/cancers10040118592337329662021
Moitra, K., Lou, H., Dean, M. (2011). Multidrug efflux pumps and cancer stem cells: Insights into multidrug resistance and therapeutic development. Clin. Pharmacol. Ther., 89 (4), 491–502.10.1038/clpt.2011.1421368752
Rajaraman, R., Guernsey, D. L., Rajaraman, M. M., Rajaraman, S. R. (2006). Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int., 6, 1–26.10.1186/1475-2867-6-25166458517092342
Rivera, E., Gomez, H. (2010). Chemotherapy resistance in metastatic breast cancer: The evolving role of ixabepilone. Breast Cancer Res.,12 (Suppl 2), S2.10.1186/bcr2573297255621050423
Saxena, M., Stephens, M. A., Pathak, H., Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis., 2, e179.10.1038/cddis.2011.61319972221734725
Sheridan, C., Kishimoto, H., Fuchs, R. K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C. H., Goulet, R. Jr., Badve, S., Nakshatri, H. (2006). CD44+/CD24-Breast cancer cells exhibit enhanced invase properties: An early step necessary for metastasis. Breast Cancer Res., 8 (5), R59.10.1186/bcr1610177949917062128
Skehan, P., Storeng, R., Scudiero, D., Monks, A., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst.,82 (13), 1107–1112.10.1093/jnci/82.13.11072359136
Smith, L. Watson, M. B., O’Kane, S. L., Drew, P. J., Lind, M. J., Cawkwell, L. (2006). The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol. Cancer Ther.,5 (8), 2115–2120.10.1158/1535-7163.MCT-06-019016928833
Sun, L., Cabarcas, S. M., Farrar, W. L. (2012). Radioresistance and cancer stem cells: Survival of the fittest. J. Carcinogene Mutagenes, s1(01), 1–12.10.4172/2157-2518.S1-004
Sundaram, M., Guernsey, D. L., Rajaraman, M. M., Rajaraman, R. (2004). Neosis: A novel type of cell division in cancer. Cancer Biol. Ther.,3, 2017–2218.10.4161/cbt.3.2.66314726689
Tegze, B., Szállási, Z., Haltrich, I., Pénzváltó, Z., Tóth, Z., Likó, I., Gyorffy, B. (2012). Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance. PLoS ONE, 7 (2), 1–9.10.1371/journal.pone.0030804327108922319589
Vassilopoulos, A., Chisholm, C., Lahusen, T., Zheng, H., Deng, C. (2013). A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene,33 (47), 5477–5482.10.1038/onc.2013.516
Vinogradov, S., Wei, X. (2012). Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine (Lond)., 7 (4), 597–615.10.2217/nnm.12.22337609022471722
Weihua, Z., Lin, Q., Ramoth, A. J., Fan, D., Fidler, I. J. (2011). Formation of solid tumors by a single multinucleated cancer cell. Cancer,117 (17), 4092–4099.10.1002/cncr.26021313661321365635
Xiang, D., Shigdar, S., Bean, A. G., Bruce, M., Yang, W., Mathesh, M., Wang, T., Yin, W., Tran, P. H., Al Shamaileh, H., Barrero, R. A., Zhang, P. Z., Li, Y., Kong, L., Liu, K., Zhou, S. F., Hou, Y., He, A., Duan, W. (2017). Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Theranostics., 7 (17), 4071–4086.10.7150/thno.20168569499829158811
Zhang, S., Mercado-Uribe, I., Xing, Z., Sun, B., Kuang, J., Liu, J. (2014). Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene, 33 (1), 116–128.10.1038/onc.2013.96