Have a personal or library account? Click to login
Ultrastructural Changes of Organelles in Root Cap Cells of Tobacco Under Salinity Cover

References

  1. Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7 (1), 18.10.3390/agronomy7010018
  2. Ahmed, I. M., Cao, F., Han, Y., Nadira, U. A., Zhang, G., Wu, F. (2013). Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chem., 141 (3), 2743–2750.10.1016/j.foodchem.2013.05.101
  3. Andronis, E. A., Roubelakis-Angelakis K. A. (2010). Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. Planta, 231 (2), 437–448.10.1007/s00425-009-1060-x
  4. Baranova, E. N., Gulevich, A. A., Polyakov, V. Y. (2007). Effect of NaCl, Na2SO4, and mannitol on utilization of storage starch and formation of plastids in the cotyledons and roots of alfalfa seedlings. Russ. J. Plant Physiol., 54 (1), 59–67.10.1134/S1021443707010086
  5. Baranova, E. N., Gulevich, A. A., Lavrova, N.V. (2009). [Баранова Г. H., Гулевич А. А., Лаврова Н. В. Цитоплазматическая характеристика устойчивости мобилизации запасных веществ при прорастании семян томата в условиях засоления среды]. Izvestia ofTimiryazev Agricultural Academy [Известия Тимирязевской сельскохозяйственной академии], № 3, 61-64 (in Russian).
  6. Baranova, E. N., Gulevich, A. A., Maysuryan, A.N., Lavrova, N.V (2011). [Баранова, E. H., Гулевич, А. А., Майсурян, А. Н., Лаврова, Н. В. Изменения в субклеточных компартментах клеток семядолей табака в период прорастания при солевом и осмотическом воздействии]. Izvestia of Timiryazev Agricultural Academy [Известия Тимирязевской сельскохозяйственной академии], № 2, 69-74 (in Russian).
  7. Bresler, E., McNeal, B. L., Carter, D. L. (2012). Saline and Sodic Soils: Principles- dynamics-modeling. Springer Science and Business Media, Berlin. 237 pp.
  8. Chen, Z., Tang, W. (2017). Molecular mechanisms regulating storage root formation in plants. Int. J. Environ. Agr. Res., 3 (1), 93–103.
  9. Čiamporová, M., Mistrík, I. (1993). The ultrastructural response of root cells to stressful conditions. Environ. Exp. Bot., 33, 11–26.10.1016/0098-8472(93)90052-H
  10. Dessaux, Y., Grandclément, C., Faure, D. (2016). Engineering the rhizosphere. Trends Plant Sci., 21 (3), 266–278.10.1016/j.tplants.2016.01.00226818718
  11. Fanello, D. D., Bartoli, C. G., Guiamet, J. J. (2017). Qualitative and quantitative modifications of root mitochondria during senescence of above-ground parts of Arabidopis thaliana. Plant Sci., 258, 112–121.10.1016/j.plantsci.2017.01.01328330554
  12. Ghosh, D., Xu, J. (2014). Abiotic stress responses in plant roots: A proteomics perspective. Front. Plant Sci., 5 (6), 1–13.10.3389/fpls.2014.00006390076624478786
  13. Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48 (12), 909–930.10.1016/j.plaphy.2010.08.01620870416
  14. Hamamoto, L., Hawes, M. C., Rost, T. L. (2006). The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants. Annals Bot., 97 (5), 917–923.10.1093/aob/mcj602280342316488922
  15. Hetherington, A. J., Dubrovsky, J. G., Dolan, L. (2016). Unique cellular organization in the oldest root meristem. Curr. Biol., 26 (12), 1629–1633.10.1016/j.cub.2016.04.072492095327265396
  16. Hodson, M. J., Mayer, A. M. (1987). Salt-induced changes in the distribution of amyloplasts in the root cap of excised pea roots in culture. Ann. Bot., 59 (5), 499–503.10.1093/oxfordjournals.aob.a087343
  17. Ibrahim, W., Ahmed, I. M., Chen, X., Wu, F. (2017). Genotype-dependent alleviation effects of exogenous GSH on salinity stress in cotton is related to improvement in chlorophyll content, photosynthetic performance, and leaf/root ultrastructure. Environ. Sci. Poll. Res., 24 (10), 9417–9427.10.1007/s11356-017-8611-728233214
  18. Kamiya, M., Higashio, S. Y., Isomoto, A., Kim, J. M., Seki, M., Miyashima, S., Nakajima, K. (2016). Control of root cap maturation and cell detachment by BEARSKIN transcription factors in Arabidopsis. Development, 143 (21), 4063–4072.10.1242/dev.14233127803060
  19. Kiss, J.Z., Sack, F. D. (1989). Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris. Planta, 180 (1), 123–130.10.1007/BF02411418
  20. Lareen, A., Burton, F., Schäfer, P. (2016.) Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol., 90 (6). 575–587.10.1007/s11103-015-0417-8481977726729479
  21. Lazareva, E. M., Baranova, E. N., Smirnova, E. A. (2017). Reorganization of interphase microtubules in root cells of Medicago sativa L. during acclimation to osmotic and salt stress. Cell Tissue Biol., 11 (4), 324–334.10.1134/S1990519X17040083
  22. Mitsuya, S., Takeoka, Y., Miyake, H. (2000). Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J. Plant Physiol., 157 (6), 661–667.10.1016/S0176-1617(00)80009-7
  23. Nakayama, N. Smith, R. S., Mandel, T., Robinson, S., Kimura, S., Boudaoud, A., Kuhlemeier, C. (2012). Mechanical regulation of auxinmediated growth. Curr. Biol., 22 (16), 1468–1476.10.1016/j.cub.2012.06.05022818916
  24. Poljakoff-Mayber, A., Gale, J. (1975). Morphological and anatomical changes in plants as a response to salinity stress. Plants in Saline Environments. Springer, Berlin, Heidelberg, pp. 97–117.10.1007/978-3-642-80929-3_8
  25. Ponce, G., Rasgado, F. A., Cassab, G. I. (2008). Roles of amyloplasts and water deficit in root tropisms. Plant Cell Environ., 31 (2), 205–217.10.1111/j.1365-3040.2007.01752.x18047572
  26. Redmann, R. E. (1974). Osmotic and specific ion effects on the germination of alfalfa. Can. J. Bot., 52, 803–808.10.1139/b74-104
  27. Sam, O., Ramírez, C., Coronado, M. J., Testillano, P. S., Risueńo, M. D. C. (2003). Changes in tomato leaves induced by NaCl stress: Leaf organization and cell ultrastructure. Biol. Plantarum, 47 (3), 361.10.1023/B:BIOP.0000023878.58899.88
  28. Staehelin, L. A. Zheng, H. Q., Yoder, T. L., Smith, J. D., Todd, P. (2007). Columella cells revisited: Novel structures, novel properties, and a novel gravisensing model. Grav. Space Res., 13 (2), 95–100.
  29. Su, S. H., Gibbs, N. M., Jancewicz, A. L., Masson, P. H. (2017). Molecular mechanisms of root gravitropism. Curr. Biol., 27 (17), 964–972.10.1016/j.cub.2017.07.01528898669
  30. Takahashi, N. Yamazaki, Y., Kobayashi, A., Higashitani, A., Takahashi, H. (2003). Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol., 132 (2), 805–810.10.1104/pp.018853
  31. Thalmann, M., Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytol., 214 (3), 943–951.10.1111/nph.1449128277621
  32. Usatov, A. V., Lutsenko, E. K., Fedorenko, A. G., Fedorenko, G. M. (2014). Cell ultrastructure of root meristem of wheat under conditions of chloride salinization [Усатов, А. В. Луценко, Э. К., Федоренко, А. Г., Федоренко, Г. М. Ультраструктура клеток корневой меристемы пшеницы в условиях хлоридного засоления]. Eurasian Union of Scientists [Евразийский союз ученых], 6, 103–106 (in Russian).
  33. Üstün, S., Hafren, A., Hofius, D. (2017). Autophagy as a mediator of life and death in plants. Curr. Opin. Plant Biol., 40, 122–130.10.1016/j.pbi.2017.08.01128946008
  34. Vigil, E. L., Ruddat, M. (1985). Development and enzyme activity of protein bodies in proteinoplasts of tobacco root cells. Histochemistry, 83 (1), 17–27.10.1007/BF004952954044299
  35. Xi, Y. X. (1995). NaCl-induced amoeboid plastids and mitochondria in meristematic cells of barley roots. Biol. Plantarum, 37 (3), 363–380.10.1007/BF02913979
  36. Zheng, H. Q., Staehelin, L. A. (2001). Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells. Plant Physiol., 125 (1), 252–265.10.1104/pp.125.1.2526100711154334
DOI: https://doi.org/10.2478/prolas-2019-0007 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 47 - 55
Submitted on: Jul 25, 2018
Accepted on: Nov 15, 2018
Published on: Feb 14, 2019
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 Ekaterina N. Baranova, Inna A. Chaban, Neonila V. Kononenko, Alexander A. Gulevich, Ludmila V. Kurenina, Elena A. Smirnova, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.