Akaike, H. (1973). Information theory and the maximum likelihood principle. In: Petrov, B. N., Csaki, F. (eds.). Second International Symposium on Information Theory, AkademiaiKiado, Budapest, pp. 267–281.
Barakat, H. M. (2015). A new method for adding two parameters to a family of distributions with application to the normal and exponential families. Statist. Meth. Applic., 24 (3), 359–372.10.1007/s10260-014-0265-8
Barakat, H. M., Khaled, O. M. (2017). Toward the establishment of a family of distributions that may fit any dataset. Commun. Statist. Simul. Comput., 48 (8), 6129–6143.10.1080/03610918.2016.1197245
Cordeiro, G. M., Castro, M. (2011). A new family of generalized distributions. Commun. Statist. Simul. Comput., 81 (7), 883–898.10.1080/00949650903530745
Hoaglin, D. C., Peter, S. C. (1979). Software for exploring distributional shapes. In:: Proceedings of Computer Science and Statistics: 12th Annual Symposium on the Interface, Ontario. Canada. Iniverty of Waterloo, pp. 418–443.
Hoaglin, D. C. (1983). Summarizing shape numerically: The g-and-h distributions. In: Exploring Data, Tables, Trends and Shapes. Wiley, New York, pp. 461–513.10.1002/9781118150702.ch11
Kumaraswamy, P. (1980). Generalized probability density-function for double bounded random-process. J. Hydrol., 462, 79–88.10.1016/0022-1694(80)90036-0
Martinez, J., Iglewicz, B. (1984). Some properties of the Tukey g and h family of distributions. Commun. Statist. Theory Meth., 13 (3), 353–369.10.1080/03610928408828687
Tukey, J. W. (1977). Modern techniques in data analysis. Proceeding of NSF Sponsored Regional Research Conference at Southeastern Massachusetts University, North Dartmouth, MA.