Have a personal or library account? Click to login

References

  1. Akaike, H. (1973). Information theory and the maximum likelihood principle. In: Petrov, B. N., Csaki, F. (eds.). Second International Symposium on Information Theory, AkademiaiKiado, Budapest, pp. 267–281.
  2. Anonymous (1996). Guidelines for drinking water quality. 2nd ed. Vol. I. World Health Organization (WHO). 990 pp.
  3. Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist., 12 (2), 171–178.
  4. Barakat, H. M. (2015). A new method for adding two parameters to a family of distributions with application to the normal and exponential families. Statist. Meth. Applic., 24 (3), 359–372.10.1007/s10260-014-0265-8
  5. Barakat, H. M., Khaled, O. M. (2017). Toward the establishment of a family of distributions that may fit any dataset. Commun. Statist. Simul. Comput., 48 (8), 6129–6143.10.1080/03610918.2016.1197245
  6. Casella, G., Berger, R. L. (2010). Inferência Estatística 2a ed. Saraiva. 588 pp.
  7. Cordeiro, G. M., Castro, M. (2011). A new family of generalized distributions. Commun. Statist. Simul. Comput., 81 (7), 883–898.10.1080/00949650903530745
  8. D’Agostino, R. B. (1978). Transformation to normality of the null. Biometrika, 57 (3), 679–681.10.1093/biomet/57.3.679
  9. Ferreira, D. F. (2009). Estatística Basica´. UFLA, Lavras. 664 pp.
  10. Hoaglin, D. C., Peter, S. C. (1979). Software for exploring distributional shapes. In:: Proceedings of Computer Science and Statistics: 12th Annual Symposium on the Interface, Ontario. Canada. Iniverty of Waterloo, pp. 418–443.
  11. Hoaglin, D. C. (1983). Summarizing shape numerically: The g-and-h distributions. In: Exploring Data, Tables, Trends and Shapes. Wiley, New York, pp. 461–513.10.1002/9781118150702.ch11
  12. Kumaraswamy, P. (1980). Generalized probability density-function for double bounded random-process. J. Hydrol., 462, 79–88.10.1016/0022-1694(80)90036-0
  13. Martinez, J., Iglewicz, B. (1984). Some properties of the Tukey g and h family of distributions. Commun. Statist. Theory Meth., 13 (3), 353–369.10.1080/03610928408828687
  14. Michelle, A. C., Denismar, A. N., Eric, B. F. (2012). Kumaraswamy normal and Azzalini’s skew normal modeling asymmetry. Sigmae, Alfenas, 1 (1), 65–83.
  15. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6 (2), 461–464.10.1214/aos/1176344136
  16. Tukey, J. W. (1977). Modern techniques in data analysis. Proceeding of NSF Sponsored Regional Research Conference at Southeastern Massachusetts University, North Dartmouth, MA.
DOI: https://doi.org/10.2478/prolas-2018-0005 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 184 - 192
Submitted on: Oct 12, 2017
Accepted on: Jan 9, 2018
Published on: Jun 21, 2018
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 Haroon M. Barakat, Osama Mohareb Khaled, N. Khalil Rakha, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.