Have a personal or library account? Click to login
Development and Characterisation of Irap Markers From Expressed Retrotransposon-like sequences in Pinus sylvestris L. Cover

Development and Characterisation of Irap Markers From Expressed Retrotransposon-like sequences in Pinus sylvestris L.

Open Access
|Jul 2014

References

  1. Asif, J. M., Othman, F. Y. (2005). Characterization of fusarium wilt-resistant and fusarium wilt-susceptible somaclones of banana cultivar Rastali (Musa AAB) by random amplified polymorphic DNA and retrotransposon markers. Plant Mol. Biol. Rep., 23 (3), 241–249.
  2. Bairu, M. W., Aremu, A. O., Staden, J. V. (2011). Somaclonal variation in plants: Causes and detection methods. Plant Growth Regul., 63, 147–173.10.1007/s10725-010-9554-x
  3. Baranek, M., Meszaros, M., Sochorova, J., Cechova, J., Raddova, J. (2012). Utility of retrotransposon-derived marker systems for differentiation of presumed clones of the apricot cultivar Velkopavlovická. Sci. Horticult., 143, 1–6.10.1016/j.scienta.2012.05.022
  4. Bayram, E., Yilmaz, S., Hamat-Mecbur, H., Kartal-Alacam, G., Gozukirmizi, N. (2012). Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.). Plant Omics Journal (POJ), 5 (3), 211–215.
  5. Benachenhou, F., Sperber, G. O., Bongcam-Rudloff, E., Andersson, G., Boeke, J. D., Blomberg, J. (2013). Conserved structure and inferred evolutionary history of long terminal repeats (LTRs). Mobile DNA, doi: 10.1186/1759-8753-4-5.10.1186/1759-8753-4-5360100323369192
  6. Berg, D. E., Howe, M. H. (eds.) (1989). Mobile DNA. Washington, D.C.: American Society for Microbiology Press.
  7. Birnboim, H. C., Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res., 7 (6), 1513–1523.10.1093/nar/7.6.1513342324388356
  8. Brandes, A., Heslop-Harrison, J. S., Kamm, A., Kubis, S., Doudrick, R. L., Schmidt, T. (1997). Comparative analysis of the chromosomal and genomic organization of Ty1-copia -like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol. Biol., 33 (1), 11–21.10.1023/A:1005797222148
  9. Campbell, B. C., LeMare, S., Piperidis, G., Godwin, I. D. (2011). IRAP, a retrotransposon-based marker system for the detection of somaclonal variation in barley. Mol. Breed., 27, 193–206.10.1007/s11032-010-9422-4
  10. Capy, P. (2005). Classification and nomenclature of retrotransposable elements. Cytogenet. Gen. Res., 110 (1–4), 457–461.10.1159/00008497816093698
  11. Capy, P., Gasperi, G., Biemont, C., Bazin, C. (2000). Stress and transposable elements: Co-evolution or useful parasites? Heredity, 85, 101–106.10.1046/j.1365-2540.2000.00751.x11012710
  12. Carvalho, A., Guedes-Pinto, H., Lima-Brito, J. E. (2012). Genetic diversity in old Portuguese durum wheat cultivars assessed by retrotransposon-based markers. Plant Mol. Biol. Rep., 30, 578–589.10.1007/s11105-011-0367-5
  13. Castro, I., D’Onofrio, C., Martín, J. P., Ortiz, J. M., De Lorenzis, G., Ferreira, V., Pinto-Carnide, O. (2012). Effectiveness of AFLPs and retrotransposon-based markers for the identification of Portuguese grapevine cultivars and clones. Mol. Biotechnol., 52 (1), 26–39.10.1007/s12033-011-9470-y22081367
  14. D’Onofrio, C., De Lorenzis, G., Giordani, T., Natali, L., Cavallini, A., Scalabrelli, G. (2010). Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genet. Gen., 6, 451–466.10.1007/s11295-009-0263-4
  15. Feschotte, C., Jiang, N., Wessler, S. R. (2002). Plant transposable elements: Where genetics meets genomics. Nat. Rev. Genet., 3, 329–341.10.1038/nrg793
  16. Finnegan, D. J. (1989). Eukaryotic transposable elements and genome evolution. Trends. Genet., 5, 103–107.10.1016/0168-9525(89)90039-5
  17. Flavell, A. J., Pearce, S. R., Kumar, A. (1994). Plant transposable elements and the genome. Curr. Opin. Genet. Dev., 4, 838–844.10.1016/0959-437X(94)90068-X
  18. Friesen, N., Brandes, A., Heslop-Harrison, J. S. (2001). Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers. Mol. Biol. Evol., 18 (7), 1176–1188.10.1093/oxfordjournals.molbev.a003905
  19. Gao, D., Chen, J., Chen, M., Meyers, B. C., Jackson, S. (2012). A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes. PloS One, doi:10.1371/journal.pone.0032010.10.1371/journal.pone.0032010
  20. Grandbastien, M. A., Lucas, H., Morel, J. B., Corinne, M. C., Vernhettes, S., Casacuberta, J. M. (1997). The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica, 100, 241–252.10.1023/A:1018302216927
  21. Inoue, H., Nojima, H., Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23–28.10.1016/0378-1119(90)90336-P
  22. Ito, H., Gaubert, H., Bucher, E., Mirouze, M., Vaillant, I., Paszkowski, J. (2011). An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472, 115–118.10.1038/nature0986121399627
  23. Kalendar, R., Antonius, K., Smykal, P., Schulman, A.H. (2010). iPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet., doi:10.1007/s00122-010-1398-2.10.1007/s00122-010-1398-220623102
  24. Kalendar, R., Grob, T., Regina, M., Suoniemi, A., Schulman, A. (1999). IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet., 98, 704–711.10.1007/s001220051124
  25. Kalendar, R., Schulman, A. H. (2007). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat. Protoc., 1 (5), 2478–2484.
  26. Kamm, A., Doudric, R. L., Heslop-Harrison, J. S., Schmidt, T. (1996). The genomic and physical organization of Ty1-copia -like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc. Natl. Acad. Sci. USA, 93, 2708–2713.10.1073/pnas.93.7.2708
  27. Knight, C. A., Ackerly, D. D. (2002). Variation in nuclear DNA content across environmental gradients: A quantile regression analysis. Ecol. Lett., 5, 66–76.10.1046/j.1461-0248.2002.00283.x
  28. Kohany, O., Gentles, A. J., Hankus, L., Jurka, J. (2006). Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics, doi:10.1186/1471-2105-7-474.10.1186/1471-2105-7-474
  29. Kossack, D. S., Kinlaw, C. S. (1999). IFG, a gypsy -like retrotransposon in Pinus (Pinaceae), has an extensive history in pines. Plant Mol. Biol., 39, 417–426.10.1023/A:1006115732620
  30. Kovach, A., Wegrzyn, J. L., Parra, G., Holt, C., Bruening, G. E., Loopstra, C. A., Hartigan, J., Yandell, M., Langley, C. H., Korf, I., Neale, D. B. (2010). The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics, doi: 10.1186/1471-2164-11-420.10.1186/1471-2164-11-420
  31. Kumar, A., Bennetzen, J. L. (1999). Plant Retrotransposons. Annu. Rev. Genet., 33, 479–532.10.1146/annurev.genet.33.1.479
  32. Kumar, A., Hirochika, H. (2001). Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci., 6 (3), 127–134.10.1016/S1360-1385(00)01860-4
  33. Kumar, A., Pearce, S. R., McLean, K., Harrison, G., Heslop-Harrison, J. S., Waugh, R., Flavell, A. J. (1997). The Ty1-copia group of retrotransposons in plants: Genomic organisation, evolution, and use as molecular markers. Genetica, 100 (1–3), 205–217.10.1007/978-94-011-4898-6_21
  34. L’Homme, Y., Seguin, A., Tremblay, F. M. (2000). Different classes of retrotransposons in coniferous spruce species. Genome, 43, 1084–1089.10.1139/g00-077
  35. Leitch, I. J., Bennett, M. D. (2004). Genome downsizing in polyploid plants. Biol. J. Linn. Soc., 82, 651–663.10.1111/j.1095-8312.2004.00349.x
  36. Lightbourn, G. J., Jelesko, J. G., Veilleux, R. E. (2007). Retrotransposonbased markers from potato monoploids used in somatic hybridization. Genome, 50 (5), 492–501.10.1139/G07-026
  37. Mak, J., Kleiman, L. (1997). Primer tRNAs for reverse transcription. J. Virol., 71 (11), 8087–8095.10.1128/jvi.71.11.8087-8095.1997
  38. McClintock, B. (1984). The significance of responses of the genome to challenge. Science, 226, 792–801.10.1126/science.1573926015739260
  39. Mignone, F., Grillo, G., Licciulli, F., Iacono, M., Liuni, S., Kersey, P. J., Duarte, J., Saccone, C. Pesole, G. (2005). UTRdb and UTRsite: A collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucl. Acids Res., 33, D141–146.
  40. Miguel, C., Simoes, M., Oliveira, M. M., Rocheta, M. (2008). Envelope-like retrotransposons in the plant kingdom: Evidence of their presence in Gymnosperms (Pinus pinaster). J. Mol. Evol., 67, 517–525.10.1007/s00239-008-9168-318925379
  41. Murray, B.G. (1998). Nuclear DNA amounts in gymnosperms. Ann. Bot., 82, 3–15.10.1006/anbo.1998.0764
  42. Murray, B.G. (2005). When does intraspecific C-value variation become taxonomically significant? Ann. Bot., 95, 119–125.
  43. Neumann, P., Pozárková, D., Macas, J. (2003). Highly abundant pea LTR Retrotransposon Ogre is constitutively transcribed and partially spliced. Plant. Mol. Biol., 53 (3), 399–410.10.1023/B:PLAN.0000006945.77043.ce
  44. Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y. C., Scofield, D. G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., Vicedomini, R., Sahlin, K., Sherwood, E., Elfstrand, M., Gramzow, L., Holmberg, K., Hällman, J., Keech, O., Klasson, L., Koriabine, M., Kucukoglu, M., Käller, M., Luthman, J., Lysholm, F., Niittylä, T., Olson, A., Rilakovic, N., Ritland, C., Rosselló, J.A., Sena, J., Svensson, T., Talavera-López, C., Theißen, G., Tuominen, H., Vanneste, K., Wu, Z. Q., Zhang, B., Zerbe, P., Arvestad, L., Bhalerao, R., Bohlmann, J., Bousquet, J., Garcia, G. R., Hvidsten, T. R., de Jong, P., MacKay, J., Morgante, M., Ritland, K., Sundberg, B., Thompson, S. L., Van de Peer, Y., Andersson, B., Nilsson, O., Ingvarsson, P.K., Lundeberg, J., Jansson, S. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, doi:10.1038/nature12211.10.1038/nature1221123698360
  45. Peakall, R., Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes, 6, 288–295.10.1111/j.1471-8286.2005.01155.x
  46. Porebski, S., Bailey, G. L., Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaharide and polyphenol componenets. Plant Mol. Biol. Rep., 15 (1), 8–15.10.1007/BF02772108
  47. Rocheta, M., Cordeiro, J., Oliveira, M., Miguel, C. (2007). PpRT1: The first complete gypsy -like retrotransposon isolated in Pinus pinaster. Planta, 225, 551–562.10.1007/s00425-006-0370-517008993
  48. Saeidi, H., Rahiminejad, M. R., Heslop-Harrison, J. S. (2008). Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) sub-taxa in Iran. Ann. Bot., 101 (6), 855–861.10.1093/aob/mcn042271020418411258
  49. Schlüter, P. M., Harris, S. A. (2006). Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Notes, 6, 569–572.10.1111/j.1471-8286.2006.01225.x
  50. Schulman, A. H. (2007). Molecular markers to assess genetic diversity. Euphytica, 158, 313–321.10.1007/s10681-006-9282-5
  51. Schulman, A. H., Flavell, A. J., Ellis, T. H. (2004). The application of LTR retrotransposons as molecular markers in plants. Meth. Mol. Biol., 260, 145–173.10.1385/1-59259-755-6:145
  52. Schulman, A. H., Flavell, A. J., Paux, E., Ellis, T. H. (2012). The application of LTR retrotransposons as molecular markers in plants. Meth. Mol. Biol., 859, 115–153.10.1007/978-1-61779-603-6_722367869
  53. Solovyev, V. V. (2002). Structure, properties and computer identification of eukaryotic genes. In: Bioinformatics Genomes to Drugs, Basic Technologies (59–111 pp.). Lengauer, T. (ed.). Wiley.
  54. Solovyev, V. V., Shahmuradov, I. A. (2003). PromH: Promoters identification using orthologous genomic sequences. Nucl. Acids Res., 31 (13), 3540–3545.10.1093/nar/gkg52516893212824362
  55. Soranzo, N., Provan, J., Powell, W. (1998). Characterization of microsatellite loci in Pinus sylvestris L. Mol. Ecol., 7, 1247–1263.
  56. Stuart-Rogers, C., Flavell, A. J. (2001). The evolution of Ty1-copia group retrotransposons in gymnosperms. Mol. Biol. Evol., 18 (2), 155–163.10.1093/oxfordjournals.molbev.a00378911158374
  57. Subudhi, P., Magpantay, G., Karan, R. (2013) A retrotransposon-based probe for fingerprinting and evolutionary studies in rice (Oryza sativa). Genet. Res. Crop. Evol., 60 (4), 1263–1273.10.1007/s10722-012-9917-4
  58. Tam, S. M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S. R., Grandbastien, M. A. (2005). Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet., 110 (5), 819–831.10.1007/s00122-004-1837-z15700147
  59. Vicient, C. M., Kalendar, R., Schulman, A. H. (2005). Variability, recombination and mosaic evolution of the barley BARE-1 retrotransposon. J. Mol. Evol., 61, 275–291.10.1007/s00239-004-0168-7
  60. Voronova, A., Jansons, A., Ruòìis, D. (2011). Expression of retrotransposon-like sequences in Scots pine (Pinus sylvestris L.) in response to heat stress. Environ. Exper. Biol., 9, 121–127.
  61. Wessler, S. R. (1996). Plant retrotransposons: Turned on by stress. Curr. Biol., 6 (8), 959–961.10.1016/S0960-9822(02)00638-3
  62. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P., Schulman, A. H. (2007) A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet., 8 (12), 973–982.10.1038/nrg216517984973
  63. Xiong, Y., Eickbush, T. H. (1990). Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J., 9, 3353–3362.10.1002/j.1460-2075.1990.tb07536.x
  64. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., Madden, T. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, doi:10.1186/1471-2105-13-134.10.1186/1471-2105-13-134341270222708584
DOI: https://doi.org/10.2478/prolas-2013-0082 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 485 - 492
Submitted on: Sep 17, 2013
Published on: Jul 17, 2014
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2014 Angelika Voronova, Dainis Ruņģis, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.