Have a personal or library account? Click to login
Hematological Findings and Alteration of Oxidative Stress Markers in Hospitalized Patients with SARS-COV-2 Cover

Hematological Findings and Alteration of Oxidative Stress Markers in Hospitalized Patients with SARS-COV-2

Open Access
|Jul 2022

References

  1. 1. COVID-19 Clinical Management: Living Guidance. World Health Organization. [online]. Website: https://www.who.int/publications/i/item/ WHO-2019-nCoV-clinical-2021-1.
  2. 2. Khan M, Khan H, Khan S et al. Epidemiological and clinical characteristics of coronavirus disease (COVID-19) cases at a screening clinic during the early outbreak period: a single-center study. J Med Microbiol. 2020; 69 (8): 1114–1123.10.1099/jmm.0.001231764297732783802
  3. 3. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020; 51 (5): 384–387.10.1016/j.arcmed.2020.04.019719050132402576
  4. 4. Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019; 8 (3): 72.10.3390/antiox8030072646657530934586
  5. 5. Zhang H, Penninger JM, Li Y et al.. Angiotensin-converting enzyme 2 (ACE2) as a SARSCoV-2 receptor: molecular mechanisms and potential therapeutic target. Int Care Med. 2020; 46(4): 586-590.10.1007/s00134-020-05985-9707987932125455
  6. 6. Huertas A, Montani D, Savale L et al. Endothelial cell dysfunction: A major player in SARSCoV-2 infection (COVID-19)? Eur Res J. 2020; 56 (1) 2001634.10.1183/13993003.01634-2020730183532554538
  7. 7. Lippi G, Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease. Hematol Transfus Cell Ther. 2019; 42(2): 116–117.10.1016/j.htct.2020.03.001712815432284281
  8. 8. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020; 28; 10 (2): 1271.10.4081/cp.2020.1271726781032509258
  9. 9. Gadotti AC, Lipinski AL, Vasconcellos FT et al. Susceptibility of the patients infected with Sars-Cov2 to oxidative stress and possible interplay with severity of the disease. Free Rad Biol Med. 2021; 165: 184–190.10.1016/j.freeradbiomed.2021.01.044784646033524532
  10. 10. Ntyonga-Pono MP. COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment? Pan Afr Med J 2020; 29, 35(Suppl 2): 12.10.11604/pamj.supp.2020.35.2.22877
  11. 11. Loffredo L, Violi F. COVID-19 and cardiovascular injury: A role for oxidative stress and antioxidant treatment? Int J Cardiol. 2020; 1, 312: 136.
  12. 12. Zhao X, Wang K, Zuo P et al. Early decrease in blood platelet count is associated with poor prognosis in COVID-19 patients-indications for predictive, preventive, and personalized medical approach. EPMA J. 2020; 14, 11(2): 1–7.
  13. 13. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020; 506: 145–148.10.1016/j.cca.2020.03.022710266332178975
  14. 14. Long H, Nie L, Xiang X et al. D-Dimer and prothrombin time are the significant indicators of severe COVID-19 and poor prognosis. Biomed Res Int. 2020; 2020: 6159720.10.1155/2020/6159720730118832596339
  15. 15. Liu Y, Gao W, Guo W et al. Prominent coagulation disorder is closely related to inflammatory response and could be as a prognostic indicator for ICU patients with COVID-19. J Thromb Thrombolysis. 2020; 50 (4): 825–832.10.1007/s11239-020-02174-9740897832761495
  16. 16. Li Y, Zhao K, Wei H et al. Dynamic relationship between D-dimer and COVID-19 severity. Br J Haematol. 2020; 190 (1): e24–e27.10.1111/bjh.16811727681932420615
  17. 17. Fu J, Kong J, Wang W et al. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou China. Thromb Res. 2020; 192: 3–8.10.1016/j.thromres.2020.05.006720124132407937
  18. 18. Peng J, Qi D, Yuan G et al. Diagnostic value of peripheral hematologic markers for coronavirus disease 2019 (COVID-19): A multicenter, cross-sectional study. J Clin Lab Anal. 2020; 34(10): e23475.10.1002/jcla.23475740436832681559
  19. 19. Yang AP, Liu JP, Tao WQ et al. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020; 84: 10650410.1016/j.intimp.2020.106504715292432304994
  20. 20. Seyit M, Avci E, Nar R et al. Neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio and platelet to lymphocyte ratio to predict the severity of COVID-19. Am J Emerg Med. 2021; 40: 110–114.10.1016/j.ajem.2020.11.058771928133309506
  21. 21. NI A. Reference Values of Neutrophil-Lymphocyte Ratio, Platelet-Lymphocyte Ratio and Mean Platelet Volume in Healthy Adults in North Central Nigeria:. J Blood Lymph. 2016; 6: 1.10.4172/2165-7831.1000143
  22. 22. Terpos E, Ntanasis-Stathopoulos I, Elalamy I et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020; 95(7): 834–847.10.1002/ajh.25829726233732282949
  23. 23. Muhammad Y, Kani YA, Iliya S et al. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021;9: 2050312121991246.10.1177/2050312121991246787128233614035
  24. 24. Pincemail J, Cavalier E, Charlier C et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants 2021; 10: 257.10.3390/antiox10020257
  25. 25. Cekerevac I, Nikolic Turnic T, Draginic N et al. Predicting Severity and Intrahospital Mortality in COVID-19: The Place and Role of Oxidative Stress. Oxid Med Cell Long. 2021. 2021: 6615787.10.1155/2021/6615787
  26. 26. Xie J, Covassin N, Fan Z et al. “Association between hypoxemia and mortality in patients with COVID-19,” Mayo Clinic Proceedings, vol. 95, no. 6, pp. 1138–1147, 2020.
  27. 27. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506.10.1016/S0140-6736(20)30183-5
  28. 28. Wang D, Hu B, Hu C et al.Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061–1069.10.1001/jama.2020.1585704288132031570
  29. 29. Wu C, Chen X, Cai Y et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020; 80(7): 934–943.10.1001/jamainternmed.2020.0994707050932167524
  30. 30. Xu H, Zhong L, Deng J et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020; 12(1):8.10.1038/s41368-020-0074-x703995632094336
  31. 31. Aggarwal S, Gollapudi S, Gupta S. Increased TNF-alpha-induced apoptosis in lymphocytes from aged humans: changes in TNF-alpha receptor expression and activation of caspases. J Immunol. 1999; 162(4): 2154–2161.
  32. 32. Liao YC, Liang WG, Chen FW et al. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol. 2002; 169(8): 4288–4297.10.4049/jimmunol.169.8.428812370360
  33. 33. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020; 77:100741.10.1016/j.jbior.2020.100741733465932773102
  34. 34. Imran MM, Ahmad U, Usman U et al. Neutrophil/lymphocyte ratio-A marker of COVID-19 pneumonia severity. Int J Clin Pract. 2021; 75(4): e13698.10.1111/ijcp.1369832892477
  35. 35. Cheng B, Hu J, Zuo X et al. Predictors of progression from moderate to severe coronavirus disease 2019: a retrospective cohort. Clin Microbiol Infect. 2020; 26(10): 1400–1405.10.1016/j.cmi.2020.06.033733155632622952
  36. 36. Chan AS, Rout A. Use of Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in COVID-19. J Clin Med Res. 2020; 12(7): 448–453.10.14740/jocmr4240
  37. 37. He X, Yao F, Chen J et al. The poor prognosis and influencing factors of high D-dimer levels for COVID-19 patients. Sci Rep. 2021; 11(1): 1830.10.1038/s41598-021-81300-w
  38. 38. Naymagon L, Zubizarreta N, Feld J, et al. Admission D-dimer levels, D-dimer trends, and outcomes in COVID-19. Thromb Res. 2020; 196: 99–105.10.1016/j.thromres.2020.08.032
  39. 39. Deng Y, Liu W, Liu K et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J. 2020; 133(11): 1261–1267.10.1097/CM9.0000000000000824
  40. 40. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 28, 395(10229): 1054 –1062.10.1016/S0140-6736(20)30566-3
  41. 41. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844–847.10.1111/jth.14768716650932073213
DOI: https://doi.org/10.2478/prilozi-2022-0029 | Journal eISSN: 1857-8985 | Journal ISSN: 1857-9345
Language: English
Page range: 5 - 13
Published on: Jul 13, 2022
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Kalina Gjorgjievska, Marija Petrushevska, Dragica Zendelovska, Emilija Atanasovska, Katerina Spasovska, Milena Stevanovikj, Krsto Grozdanovski, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.