Have a personal or library account? Click to login
Polyphenol Rich Sugar Cane Extract Inhibits Bacterial Growth Cover

Polyphenol Rich Sugar Cane Extract Inhibits Bacterial Growth

Open Access
|Dec 2020

References

  1. 1. Romani, A., et al., HPLC-DAD/MS Characterization of Flavonoids and Hydroxycinnamic Derivatives in Turnip Tops (Brassica rapa L. Subsp. sylvestris L.). Journal of Agricultural and Food Chemistry, 2006. 54(4): 342–1346.10.1021/jf052629x16478258
  2. 2. Tiwari, B.K., et al., Application of natural antimicrobials for food preservation. J Agric Food Chem, 2009. 57(14): 5987–6000.10.1021/jf900668n19548681
  3. 3. Cowan, M.M., Plant products as antimicrobial agents. Clinical microbiology reviews, 1999. 12(4): 564–582.10.1128/CMR.12.4.5648892510515903
  4. 4. Chávez-González, M.L., R. Rodríguez-Herrera, and C.N. Aguilar, Chapter 11 - Essential Oils: A Natural Alternative to Combat Antibiotics Resistance, in Antibiotic Resistance, K. Kon and M. Rai, Editors. 2016, Academic Press. 227–237.10.1016/B978-0-12-803642-6.00011-3
  5. 5. Hintz, T., K.K. Matthews, and R. Di, The Use of Plant Antimicrobial Compounds for Food Preservation. Biomed Res Int, 2015. 2015: 246–264.10.1155/2015/246264461976826539472
  6. 6. Feng, S., et al., Phytochemical contents and anti-oxidant capacities of different parts of two sugar-cane (Saccharum officinarum L.) cultivars. Food Chemistry, 2014. 151: 452–458.10.1016/j.foodchem.2013.11.05724423556
  7. 7. Fukai, K., T. Ishigami, and Y. Kara, Antibacterial Activity of Tea Polyphenols against Phytopathogenic Bacteria. Agricultural and Biological Chemistry, 1991. 55(7): 1895–1897.10.1271/bbb1961.55.1895
  8. 8. Park, B.J., et al., Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts. Biochemical and Biophysical Research Communications, 2006. 347(2): 401–405.10.1016/j.bbrc.2006.06.03716831406
  9. 9. Taguri, T., T. Tanaka, and I. Kouno, Antimicrobial Activity of 10 Different Plant Polyphenols against Bacteria Causing Food-Borne Disease. Biological and Pharmaceutical Bulletin, 2004. 27(12): 1965–1969.10.1248/bpb.27.196515577214
  10. 10. Thakur, D., et al., Antimicrobial Activities of Tocklai Vegetative Tea Clones. Indian Journal of Microbiology, 2011. 51(4): 450–455.10.1007/s12088-011-0190-6320994323024406
  11. 11. Stover, M.G. and R.R. Watson, Polyphenols in Foods and Dietary Supplements: Role in Veterinary Medicine and Animal Health, in Polyphenols in Human Health and Disease. 2013. 3–7.10.1016/B978-0-12-398456-2.00001-3
  12. 12. Weisburger, J.H., Prevention of coronary heart disease and cancer by tea, a review. Environmental Health and Preventive Medicine, 2003. 7(6): 283–288.10.1007/BF02908887
  13. 13. Scalbert, A., I.T. Johnson, and M. Saltmarsh, Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 2005. 81(1): 215S–217S.10.1093/ajcn/81.1.215S
  14. 14. Pandey, A. and S. Kumar, Perspective on plant products as antimicrobial agents: a review. Pharmacologia, 2013. 4(7): 469–480.10.5567/pharmacologia.2013.469.480
  15. 15. Clark, A.M., Natural products as a resource for new drugs. Pharmaceutical research, 1996. 13(8): 1133–1141.10.1023/A:1016091631721
  16. 16. Lukačišinová, M. and T. Bollenbach, Toward a quantitative understanding of antibiotic resistance evolution. Current Opinion in Biotechnology, 2017. 46: 90–97.10.1016/j.copbio.2017.02.013
  17. 17. Tallapragada, P. and R. Dikshit, Chapter 11 -Microbial Production of Secondary Metabolites as Food Ingredients, in Microbial Production of Food Ingredients and Additives, A.M. Holban and A.M. Grumezescu, Editors. 2017, Academic Press. 317–345.10.1016/B978-0-12-811520-6.00011-8
  18. 18. Wang, H., G.J. Provan, and K. Helliwell, Tea flavonoids: their functions, utilisation and analysis. Trends in Food Science & Technology, 2000. 11(4-5): 152–160.10.1016/S0924-2244(00)00061-3
  19. 19. Zhao, Y., et al., The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food chemistry, 2015. 185: 112–118.10.1016/j.foodchem.2015.03.12025952848
  20. 20. Hussain, Z., et al., Investigation of the antimicrobial activity of the extract of the leaves of sugar cane (Sacharaum officinarum). Journal of Pharmacy Research 2011. 4(11): 4292–4293.
  21. 21. Kaur, R., S.K. Uppal, and P. Sharma, Antioxidant and Antibacterial Activities of Sugarcane Bagasse Lignin and Chemically Modified Lignins. Sugar tech, 2017. 19(6): 675–680.10.1007/s12355-017-0513-y
  22. 22. Ellis, T.P., et al., Postprandial insulin and glucose levels are reduced in healthy subjects when a standardised breakfast meal is supplemented with a filtered sugarcane molasses concentrate. Eur J Nutr, 2016. 55(8): 2365–2376.10.1007/s00394-015-1043-626410392
  23. 23. Wright, A.G., T.P. Ellis, and L.L. Ilag, Filtered molasses concentrate from sugar cane: natural functional ingredient effective in lowering the glycaemic index and insulin response of high carbohydrate foods. Plant Foods Hum Nutr, 2014. 69(4): 310–6.10.1007/s11130-014-0446-525373842
  24. 24. Biesalski, H.K., Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci, 2016. 1372(1): 53–64.10.1111/nyas.1314527362360
  25. 25. Kessler, R., et al., Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes. Pathog Dis, 2015. 73(8): p. ftv076.10.1093/femspd/ftv076462217226410828
  26. 26. Spaulding, C.N., et al., Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes, 2018. 4: 4.10.1038/s41522-018-0048-3582915929507749
  27. 27. Fey, P.D. and M.E. Olson, Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol, 2010. 5(6): 917–33.10.2217/fmb.10.56290304620521936
  28. 28. Otto, M., Staphylococcus epidermidis - the “accidental” pathogen”. Nature Reviews Microbiology, 2010. 7(8): 555–567.10.1038/nrmicro2182280762519609257
  29. 29. Bek-Thomsen, M., H.B. Lomholt, and M. Kilian, Acne is not associated with yet-uncultured bacteria. J Clin Microbiol, 2008. 46(10): 3355–60.10.1128/JCM.00799-08256612618716234
  30. 30. Byrd, A.L., Y. Belkaid, and J.A. Segre, The human skin microbiome. Nat Rev Microbiol, 2018. 16(3): 143–155.10.1038/nrmicro.2017.15729332945
  31. 31. Tzellos, T., et al., Treating acne with antibiotic-resistant bacterial colonization. Expert Opin Pharmacother, 2011. 12(8): 1233–47.10.1517/14656566.2011.55319221355786
  32. 32. Hudson, A.J., G.D. Glaister, and H.J. Wieden, The Emergency Medical Service Microbiome. Appl Environ Microbiol, 2017.10.1128/AEM.02098-17581294829222105
  33. 33. Schlecht, L.M., et al., Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology, 2015. 161(Pt 1): 168–181.10.1099/mic.0.083485-0427478525332378
  34. 34. Nicolas, G.G. and M.C. Lavoie, [Streptococcus mutans and oral streptococci in dental plaque]. Can J Microbiol, 2011. 57(1): 1–20.10.1139/W10-095
  35. 35. Prasanth, M., Antimicrobial efficacy of different toothpastes and mouthrinses: an in vitro study. Dent Res J (Isfahan), 2011. 8(2): 85–94.
  36. 36. Ji, J., et al., Antioxidant and Anti-Diabetic Functions of a Polyphenol-Rich Sugarcane Extract. J Am Coll Nutr, 2019: 1–11.
  37. 37. Shang, R.F., et al., Synthesis and biological evaluation of new pleuromutilin derivatives as antibacterial agents. Molecules, 2014. 19(11): 19050–65.10.3390/molecules191119050627145525415471
  38. 38. Akers, M.D., Exploring, Analysing and Interpreting Data with Minitab 18 (1st ed.) United Kingdom. Compass Publishing, 2018.
  39. 39. Ahmed, S., et al., Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. Oxid Med Cell Longev, 2018. 2018: 8367846.10.1155/2018/8367846582281929492183
  40. 40. Apostolopoulos, V., et al., Let’s Go Bananas! Gren Bananas and their Health Benefits. Pril (Makedon Akad Nauk Umet Odd Med Nauki), 2017. 38(2): 147–151.10.1515/prilozi-2017-003328991769
  41. 41. Harris, J.C., et al., Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol, 2001. 57(3): 282–6.10.1007/s00253010072211759674
  42. 42. Kalemba, D. and A. Kunicka, Antibacterial and antifungal properties of essential oils. Curr Med Chem, 2003. 10(10): 813–29.10.2174/092986703345771912678685
  43. 43. Ma, D.S.L., et al., Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Front Pharmacol, 2018. 9: 102.10.3389/fphar.2018.00102582606229515440
  44. 44. Nabavi, S.F., et al., Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients, 2015. 7(9): 7729–48.10.3390/nu7095359458655426378575
  45. 45. Saeed, M., et al., The Promising Pharmacological Effects and Therapeutic/Medicinal applications of Punica Granatum L. (Pomegranate) as a Functional Food in Humans and Animals. Recent Pat Inflamm Allergy Drug Discov, 2018.10.2174/1872213X1266618022115471329473532
  46. 46. Noormandi, A. and F. Dabaghzadeh, Effects of green tea on Escherichia coli as a uropathogen. Journal of Traditional and Complementary Medicine, 2015. 5(1): 15–20.10.1016/j.jtcme.2014.10.005448817826151004
  47. 47. Passat, D.N., Interactions of black and green tea water extracts with antibiotics activity in local urinary isolated Escherichia coli. J. AlNahrain Univ., 2012. 15: 134–142.10.22401/JNUS.15.3.19
  48. 48. Wu, D., et al., Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid. Phytother Res, 2010. 24 Suppl 1: S35–41.10.1002/ptr.287319444866
DOI: https://doi.org/10.2478/prilozi-2020-0045 | Journal eISSN: 1857-8985 | Journal ISSN: 1857-9345
Language: English
Page range: 49 - 57
Published on: Dec 8, 2020
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Fatah B Ahtesh, Lily Stojanovska, Jack Feehan, Maximilian PJ de Courten, Matthew Flavel, Barry Kitchen, Vasso Apostolopoulos, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.