Have a personal or library account? Click to login
SCADA-Based Offshore Wind Turbine Monitoring: A Review of Methods of Addressing Marine Environmental Challenges Cover

SCADA-Based Offshore Wind Turbine Monitoring: A Review of Methods of Addressing Marine Environmental Challenges

Open Access
|Nov 2025

References

  1. WindEurope. Europe doubles down on offshore wind to drive industrial competitiveness. In WindEurope. 2024. Retrieved from https://windeurope.org/news/europe-doubles-down-on-offshore-wind-to-drive-industrial-competitiveness/
  2. McMillan D, Ault GW. Quantification of condition monitoring benefit for offshore wind turbines. Wind Eng 2007, vol. 31, no. 4, pp. 267–285. https://doi.org/10.1260/030952407783123060
  3. Pandit R, Wang J. A comprehensive review on enhancing wind turbine applications with advanced SCADA data analytics and practical insights. IET Renew Power Gener 2024, vol. 18, no. 4, pp. 722–742. https://doi.org/10.1049/rpg2.12920
  4. Cevasco D, Koukoura S, Kolios AJ. Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications. Renew Sustain Energy Rev 2021, vol. 136, p. 110414. https://doi.org/10.1016/j.rser.2020.110414
  5. Larsén XG, Fischereit J, Hamzeloo S, Bärfuss K, Lampert A. Investigation of wind farm impacts on surface waves using coupled numerical simulations. Renew Energy 2024, vol. 237, p. 121671. https://doi.org/10.1016/j.renene.2024.121671
  6. Niklas K. Strength analysis of a large-size supporting structure for an offshore wind turbine. Pol Marit Res 2017, vol. 24, no. s1, pp. 156–165. https://doi.org/10.1515/pomr-2017-0034
  7. Agarwal D, Kishor N. A fuzzy inference-based fault detection scheme using adaptive thresholds for health monitoring of offshore wind-farms. IEEE Sens J 2014, vol. 14, no. 11, pp. 3851–3861. https://doi.org/10.1109/JSEN.2014.2347700
  8. Zhu C, Zhang T. A review on the realization methods of dynamic fault tree. Qual Reliab Eng Int 2022, vol. 38, no. 6, pp. 3233–3251. https://doi.org/10.1002/qre.3139
  9. Dinmohammadi F, Shafiee M. A fuzzy-FMEA risk assessment approach for offshore wind turbines. Int J Progn Health Manag 2013, vol. 4, no. 13, pp. 59–68. https://doi.org/10.36001/ijphm.2013.v4i3.2143
  10. Li H, Díaz H, Soares CG. A failure analysis of floating offshore wind turbines using AHP-FMEA methodology. Ocean Eng 2021, vol. 234, p. 109261. https://doi.org/10.1016/j.oceaneng.2021.109261
  11. Zhang J, Kang J, Sun L, Bai X. Risk assessment of floating offshore wind turbines based on fuzzy fault tree analysis. Ocean Eng 2021, vol. 239, p. 109859. https://doi.org/10.1016/j.oceaneng.2021.109859
  12. Dienst S, Beseler J. Automatic anomaly detection in offshore wind SCADA data. Proc. WindEurope Summit 2016.
  13. Tautz-Weinert J, Watson SJ. Using SCADA data for wind turbine condition monitoring—A review. IET Renew Power Gener 2017, vol. 11, no. 4, pp. 382–394. https://doi.org/10.1049/iet-rpg.2016.0248
  14. Miraftabzadeh SM, Colombo CG, Longo M, Foiadelli F. K-means and alternative clustering methods in modern power systems. IEEE Access 2023, vol. 11, pp. 119596–119633.
  15. Li YF, Hu ZA, Gao JW, Zhang YS, Li PF, Du HZ. Efficient anomaly detection method for offshore wind turbines. J Electron Sci Technol 2024, vol. 22, no. 4, p. 100285. https://doi.org/10.1016/j.jnlest.2024.100285
  16. Suliaman S, Salam N. An adaptive anomaly detection and fault diagnosis in wind turbine. Proc. IEEE Int Women Eng Conf Electr Comput Eng (WIECON-ECE) 2021, pp. 172–175.
  17. Pandit RK, Infield D. SCADA-based wind turbine anomaly detection using Gaussian process models for wind turbine condition monitoring purposes. IET Renew Power Gener 2018, vol. 12, no. 11, pp. 1249–1255. https://doi.org/10.1049/iet-rpg.2018.0156
  18. Leahy K, Hu RL, Konstantakopoulos IC, Spanos CJ, Agogino AM. Diagnosing wind turbine faults using machine learning techniques applied to operational data. Proc. IEEE Int Conf Progn Health Manag (ICPHM) 2016, pp. 1–8. https://doi.org/10.1109/ICPHM.2016.7542860
  19. Helbing G, Ritter M. Deep learning for fault detection in wind turbines. Renew Sustain Energy Rev 2018, vol. 98, pp. 189–198. https://doi.org/10.1016/j.rser.2018.09.012
  20. Schlechtingen M, Santos IF, Achiche S. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: System description. Appl Soft Comput 2013, vol. 13, no. 1, pp. 259–270. https://doi.org/10.1016/j.asoc.2012.08.033
  21. Schlechtingen M, Santos IF. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 2: Application examples. Appl Soft Comput 2014, vol. 14, pp. 447–460. https://doi.org/10.1016/j.asoc.2013.09.016
  22. Noppe N, Iliopoulos A, Weijtjens W, Devriendt C. Full load estimation of an offshore wind turbine based on SCADA and accelerometer data. J Phys Conf Ser 2016, vol. 753, no. 7, p. 072025. https://doi.org/10.1088/1742-6596/753/7/072025
  23. Branlard E, Jonkman J, Brown C, Zhang J. A digital twin solution for floating offshore wind turbines validated using a full-scale prototype. Wind Energy Sci 2024, vol. 9, no. 1, pp. 1–24. https://doi.org/10.5194/wes-9-1-2024
  24. Jamil F, Peeters C, Verstraeten T, Helsen J. Leveraging signal processing and machine learning for automated fault detection in wind turbine drivetrains. Wind Energy Sci Discuss 2024, vol. 10, pp. 1963–1978. https://doi.org/10.5194/wes-10-1963-2025
  25. Ziegler L, Gonzalez E, Rubert T, Smolka U, Melero JJ. Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renew Sustain Energy Rev 2018, vol. 82, pp. 1261–1271. https://doi.org/10.1016/j.rser.2017.09.100
  26. Liang J, Fu Y, Wang Y, Ou J. Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition. Renew Energy 2024, vol. 237, p. 121525. https://doi.org/10.1016/j.renene.2024.121525
  27. Gebel J, Rezaei A, Vemuri A, Liverud Krathe V, Daems PJ, Matthys JJ, Helsen J. System identification of offshore wind turbines for model updating and validation using field measurements. Wind Energy Sci Discuss 2025, pp. 1–25.
  28. Ambarita EE, Karlsen A, Scibilia F, Hasan A. Industrial digital twins in offshore wind farms. Energy Inform 2024, vol. 7, no. 1, p. 5. https://doi.org/10.1186/s42162-024-00306-6
DOI: https://doi.org/10.2478/pomr-2025-0061 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 187 - 194
Published on: Nov 18, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Klaudia Wrzask, Agata Kołakowska, Patryk Jasik, Paweł Syty, Jerzy Dembski, Bogdan Wiszniewski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.