References
- R. J. Warburton, H. Pillai, and R. C. Reineman, “INITIAL RESULTS WITH THE NEW GWR iGravTM SUPERCONDUCTING GRAVITY METER,” 2010.
- L. G. D. Thompson and L. J. B. LaCoste, “Aerial gravity measurements,” J Geophys Res, Vol. 65, no. 1, pp. 305–322, 1960, doi: 10.1029/JZ065i001p00305.
- L. J. B. LaCoste, “Measurement of gravity at sea and in the air,” Reviews of geophysics, Vol. 5, no. 4, pp. 477–526, 1967.
- P. Dehlinger, Marine Gravity. Elsevier Scientific Publishing Company 1978.
- A. Misztal, G. M. Szymanski, W. Misztal, and P. Komorski, “Innovative application of quality methods in the homogeneity assessment of the F-16 aircraft group in terms of generated noise,” Eksploatacja i Niezawodność, vol. Vol. 24, no. 2, pp. 187–199, Feb. 2022, doi: 10.17531/EIN.2022.2.1.
- Y. Kim, S. Lee, K. Okino, and K. Koizumi, “Gravity anomaly across the Yap Trench, Sorol Trough, and southernmost Parece Vela Basin and its implications for the flexural deformation of the lithosphere and regional isostasy,” in AGU Fall Meeting Abstracts, 2005.
- S. Jin and R. Barzaghi, IGFS 2014: Proceedings of the 3rd International Gravity Field Service (IGFS), Shanghai, China, June 30-July 6, 2014, Vol. 144. Springer, 2017.
- Y. L. Smoller et al., “Using airborne gravimeter GT2A in polar areas,” in TG-SMM 2013 - IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, Proceedings, State Research Center of the Russian Federation, 2013, pp. 36–40.
- M. Przyborski, J. Pyrchla, K. Pyrchla, and J. Szulwic, “Microgal gravity measurements with mgs-6 micro-g lacoste gravimeter,” Sensors (Switzerland), Vol. 19, no. 11, 2019, doi: 10.3390/s19112592.
- L. J. B. Lacoste, “Crosscorrelation method for evaluating and correcting shipboard gravity data,” Geophysics, Vol. 38, no. 4, pp. 701–709, 1973.
- L. Lacoste, N. Clarkson, and G. Hamilton, “Lacoste and Romberg Stabilized Platform Shipboard Gravity Meter,” Geophysics, Vol. 32, no. 1, pp. 99–109, 1967, doi: 10.1190/1.1439860.
- L. LaCoste, “LaCoste and Romberg straight-line gravity meter,” Geophysics, Vol. 48, no. 5, pp. 606–610, 1983.
- H. Lyu, S. Wang, X. Zhang, Z. Yang, and M. Pecht, “Reliability modeling for dependent competing failure processes with phase-type distribution considering changing degradation rate,” Eksploatacja i Niezawodność – Maintenance and Reliability, Vol. 23, no. 4, pp. 627–635, Dec. 2021, doi: 10.17531/ein.2021.4.5.
- Z. Zheng, J. Yang, Y. Hu, and X. Wang, “Open-source Software Reliability Modeling with Stochastic Impulsive Differential Equations,” Eksploatacja i Niezawodność – Maintenance and Reliability, Vol. 25, no. 2, p. 2023, 2023, doi: 10.17531/EIN/166342.
- L. A. Rodríguez-Picón, L. C. Méndez-González, I. J. Pérez-Olguín, and J. I. Hernández-Hernández, “A study of the Inverse Gaussian Process with hazard rate functions-based drifts applied to degradation modelling,” Eksploatacja i Niezawodność, Vol. Vol. 24, no. 3, pp. 590–602, 2022, doi: 10.17531/EIN.2022.3.20.
- H. Kantz and T. Schreiber, “Nonlinear Time Series Analysis Nonlinear Time Series Analysis ( 2nd ed. ), by Holger Kantz and Thomas Schreiber, Cambridge, U.K. : Cambridge University Press, 2004, ISBN 0-521-82150-9, xvi + 369 pp., $120.00 .,” Technometrics, Vol. 47, no. 3, pp. 381–381, 2005, Accessed: May 09, 2025. [Online]. Available: http://pubs.amstat.org/doi/abs/10.1198/tech.2005.s306
- T. Schreiber and H. Kantz, “Noise in chaotic data: Diagnosis and treatment,” Chaos, Vol. 5, no. 1, 1995, doi: 10.1063/1.166095.
- T. Schreiber and A. Schmitz, “Improved surrogate data for nonlinearity tests,” Phys Rev Lett, Vol. 77, no. 4, pp. 635–638, Jul. 1996, doi: 10.1103/PhysRevLett.77.635.
- Y. Lyu, Q. Zhang, A. Chen, and Z. Wen, “Interval Prediction of Remaining Useful Life based on Convolutional Auto-Encode and Lower Upper Bound Estimation,” Eksploatacja i Niezawodność – Maintenance and Reliability, Vol. 25, no. 2, p. 2023, Apr. 2023, doi: 10.17531/EIN/165811.
- J. Kang, Y. Lu, B. Zhao, H. Luo, J. Meng, and Y. Zhang, “Remaining useful life prediction of cylinder liner based on nonlinear degradation model,” Eksploatacja i Niezawodność, vol. Vol. 24, no. 1, pp. 62–69, 2022, doi: 10.17531/EIN.2022.1.8.
- H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, “The analysis of observed chaotic data in physical systems,” Rev Mod Phys, Vol. 65, no. 4, p. 1331, Oct. 1993, doi: 10.1103/RevModPhys.65.1331.
- V. V Adushkin, A. A. Spivak, and V. A. Kharlamov, “Effects of lunar-solar tides in the variations of geophysical fields at the boundary between the Earth’s crust and the atmosphere,” Izvestiya, Physics of the Solid Earth, Vol. 48, no. 2, pp. 104–116, 2012.
- T. Gautama, D. P. Mandic, and M. M. Van Hulle, “A Novel Method for Determining the Nature of Time Series,” IEEE Trans Biomed Eng, Vol. 51, no. 5, pp. 728–736, May 2004, doi: 10.1109/TBME.2004.824122.
- F. K, “‘Introduction to Statistical Pattern Recognition, Second Edition’ (Computer Science and Scientific Computing Series),” 1990, Accessed: May 09, 2025. [Online]. Available: http://www.citeulike.org/user/teesid/article/1606649
- R. Hegger, H. Kantz, and T. Schreiber, “Practical implementation of nonlinear time series methods: The TISEAN package.,” Chaos, Vol. 9, no. 2, pp. 413–435, Jun. 1999, doi: 10.1063/1.166424.
- T. Schreiber, “Interdisciplinary application of nonlinear time series methods,” Phys Rep, vol. 308, no. 1, pp. 1–64, Jan. 1999, doi: 10.1016/S0370-1573(98)00035-0.
- T. Schreiber, “Detecting and Analyzing Nonstationarity in a Time Series Using Nonlinear Cross Predictions,” Phys Rev Lett, vol. 78, no. 5, p. 843, Feb. 1997, doi: 10.1103/PhysRevLett.78.843.
- T. Gautama, D. P. Mandic, and M. M. VanHulle, “A Novel Method for Determining the Nature of Time Series,” IEEE Trans Biomed Eng, vol. 51, no. 5, pp. 728–736, May 2004, doi: 10.1109/TBME.2004.824122.
- J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne Farmer, “Testing for nonlinearity in time series: the method of surrogate data,” Physica D, vol. 58, no. 1–4, pp. 77–94, Sep. 1992, doi: 10.1016/0167-2789(92)90102-S.