Have a personal or library account? Click to login
Rigid Finite Element Method In Modelling The Dynamics Of Risers And Considering Large Deflections Cover

Rigid Finite Element Method In Modelling The Dynamics Of Risers And Considering Large Deflections

Open Access
|Aug 2025

References

  1. Chatjigeorgiou IK. A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers. Ocean Eng. 2008; 35: 616–636. https://doi.org/10.1016/j.oceaneng.2008.01.006.
  2. Wang Y, Luo S, Yang M, Qin T, Zhao J, Yu G. Analysis of Marine Risers Subjected to Shoal/Deep Water in the Installation Process. Polish Marit Res. 2022; 29: 43–54. https://doi.org/10.2478/pomr-2022-0016.
  3. Chen L, Yi H. Dynamic Characteristic Study of Riser with Complex Pre-stress Distribution. Polish Marit Res. 2019; 26: 87–97. https://doi.org/10.2478/pomr-2019-0049.
  4. Hong K-S, Shah UH. Vortex-induced vibrations and control of marine risers: A review. Ocean Eng. 2018; 152: 300–15. https://doi.org/10.1016/j.oceaneng.2018.01.086.
  5. Kaewunruen S, Mccarthy T, Leklong J, Chucheepsakul S. Influence of joint stiffness on the free vibration of marine riser conveying fluid. Proc. Eighth ISOPE Pacific/Asia Offshore Mech. Symp., Bangkok, Thailand: The International Society of Offshore and Polar Engineers; 2008, pp. 113–20. https://doi.org/ISBN978-1-880653-52-4.
  6. Montoya-Hernández DJ, Vázquez-Hernández AO, Cuamatzi R, Hernandez MA. Natural frequency analysis of a marine riser considering multiphase internal flow behavior. Ocean Eng. 2014; 92: 103–113. https://doi.org/10.1016/j.oceaneng.2014.09.039.
  7. Chai YT, Varyani KS, Barltrop NDPp. Three-dimensional Lump-Mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect. Ocean Eng. 2002; 29: 1503–1525. https://doi.org/10.1016/S0029-8018(01)00087-7.
  8. Jensen GA, Säfström N, Nguyen TD, Fossen TI. A nonlinear PDE formulation for offshore vessel pipeline installation. Ocean Eng. 2010; 37: 365–77. https://doi.org/10.1016/j.oceaneng.2009.12.009.
  9. Gao G, Cui Y, Qiu X. Prediction of Vortex-Induced Vibration Response of Deep Sea Top-Tensioned Riser in Sheared Flow Considering Parametric Excitations. Polish Marit Res. 2020; 27: 48–57. https://doi.org/10.2478/pomr-2020-0026.
  10. Olszewski A, Wodtke M, Wójcikowski A. FEM Analysis and Experimental Tests of Rigid Riser Hanging System. Polish Marit Res. 2018; 25: 108–115. doi:10.2478/pomr-2018-0061.
  11. Orcina. OrcaFlex Manual. Cumbria, UK: Orcina Ltd. 2015.
  12. RIFLEX 4.10.3 User Guide. 2017.
  13. Connelly JD, Huston RL. The dynamics of flexible multibody systems: A finite segment approach-I. Theoretical aspects. Comput Struct. 1994; 50: 255–258. https://doi.org/10.1016/0045-7949(94)90300-X.
  14. Connelly JD, Huston RL. The dynamics of flexible multibody systems: A finite segment approach—II. Example problems. Comput Struct. 1994; 50: 259–262. https://doi.org/10.1016/0045-7949(94)90301-8.
  15. Xu X, Yao B, Ren P. Dynamics calculation for underwater moving slender bodies based on flexible segment model. Ocean Eng. 2013; 57: 111–127. https://doi.org/10.1016/j.oceaneng.2012.09.011.
  16. Kruszewski J, Gawroński W, Wittbrodt E, Najbar F, Grabowski S. Rigid finite element method (Metoda sztywnych elementów skończonych). 1st ed. Warszawa: Arkady; 1975.
  17. Wittbrodt E, Adamiec-Wójcik I, Wojciech S. Dynamics of Flexible Multibody Systems Rigid Finite Element Method. 1st ed. Berlin Heidelberg: Springer-Verlag; 2006. https://doi.org/10.1007/978-3-540-32352-5.
  18. Szczotka M. A modification of the rigid finite element method and its application to the J-lay problem. Acta Mech. 2011; 220: 183–198. https://doi.org/10.1007/s00707-011-0470-6.
  19. Drąg Ł. Modelling of ropes, risers and cranes with the rigid finite element method. Akademia Techniczno-Humanistyczna w Bielsku-Białej; 2021.
  20. Wittbrodt E, Szczotka M, Maczyński A, Wojciech S. Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures. 1st ed. Berlin Heidelberg: Springer-Verlag; 2013. https://doi.org/10.1007/978-3-642-29886-8.
  21. Adamiec-Wójcik I, Awrejcewicz J, Drąg Ł, Wojciech S. Compensation of top horizontal displacements of a riser. Meccanica. 2016; 51: 2753–2762. https://doi.org/10.1007/s11012-016-0447-6.
  22. Adamiec-Wójcik I, Brzozowska L, Wojciech S. The rigid finite element and segment methods in dynamic analysis of risers. In: Uhl T, editor. Adv. Mech. Mach. Sci., Cham: Springer International Publishing; 2019, pp. 3017–3026.
  23. Adamiec-Wójcik I, Brzozowska L, Drąg Ł. An analysis of dynamics of risers during vessel motion by means of the rigid finite element method. Ocean Eng. 2015; 106. https://doi.org/10.1016/j.oceaneng.2015.06.053.
  24. Ghadimi R. A simple and efficient algorithm for the static and dynamic analysis of flexible marine risers. Comput Struct. 1988; 29: 541–555. https://doi.org/10.1016/0045-7949(88)90364-1.
  25. Yin D, Passano E, Lie H, Grytøyr G, Aronsen K, Tognarelli M, et al. Dynamic response of a top-tensioned riser under vessel motion. Proc. Int. Offshore Polar Eng. Conf., Vol. 2018- June, 2018; 979–986.
  26. Yin D, Lie H, Russo M, Grytøyr G. Drilling Riser Model Test for Software Verification. J Offshore Mech Arct Eng. 2017; 140. https://doi.org/10.1115/1.4037727.
DOI: https://doi.org/10.2478/pomr-2025-0038 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 92 - 99
Published on: Aug 12, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Iwona Adamiec-Wójcik, Łukasz Drąg, Stanisław Wojciech, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.