Have a personal or library account? Click to login
Design of a Wave-Shaped Towing Cable for Stable, Low-Drag Acoustic Monitoring in Wave Glider Systems Cover

Design of a Wave-Shaped Towing Cable for Stable, Low-Drag Acoustic Monitoring in Wave Glider Systems

Open Access
|Aug 2025

References

  1. Liu W et al. The flow-induced structural vibration noise suppression mechanism of a wing–plate model by the junction suction and trailing edge blowing. J. Sound Vib. 2024, Vol. 578, p. 118340. https://doi.org/10.1016/j.jsv.2024.118340
  2. Bingham B et al. Passive and active acoustics using an autonomous wave glider. J. Field Robot. 2012, Vol. 29, pp. 911-923. https://doi.org/10.1002/rob.21424
  3. Fedorova TA, Ryzhov VA, Semenov NN et al. Optimization of an underwater wireless sensor network architecture with wave glider as a mobile gateway. J. Mar. Sci. Appl. 2022, Vol. 21, pp. 179-196. https://doi.org/10.1007/s11804-022-00268-9
  4. Luczkovich JJ, Sprague MW. Soundscape maps of soniferous fishes observed from a mobile glider. Front. Mar. Sci. 2022, Vol. 9, p. 779540. https://doi.org/10.3389/fmars.2022.779540
  5. Bittencourt L et al. Map cetacean sounds using a passive acoustic monitoring system towed by an autonomous wave glider in the Southwestern Atlantic Ocean. Deep Sea Res., Part I, Oceanogr. Res. Pap. 2018, Vol. 142, pp. 58-68. https://doi.org/10.1016/j.dsr.2018.10.006
  6. Ross SRPJ et al. Passive acoustic monitoring provides a fresh perspective on fundamental ecological questions. Funct. Ecol. 2023, Vol. 37, pp. 959-975. https://doi.org/10.1111/1365-2435.14275
  7. Johnston P, Pierpoint C. Deployment of a passive acoustic monitoring (PAM) array from the AutoNaut wave-propelled unmanned surface vessel (USV). In OCEANS 2017-Aberdeen, 2017. IEEE. https://doi.org:10.1109/OCEANSE.2017.8084780
  8. Treloar AA et al. Real-time in-situ passive acoustic array beamforming from the AutoNaut wave-propelled uncrewed surface vessel. IEEE J. Ocean. Eng. 2024, Vol. 49, pp. 713–726. https://doi.org:10.1109/JOE.2024.3365169
  9. Da Silva Gomes S, Gomes SCP. A new dynamic model of towing cables. Ocean Eng. 2021, Vol. 220, p. 107653. https://doi.org/10.1016/j.oceaneng.2020.107653
  10. Zhao Y, Li G, Lian L. Numerical model of towed cable body system validation from sea trial experimental data. Ocean Eng. 2021, Vol. 226, p. 108859. https://doi.org/10.1016/j.oceaneng.2021.108859
  11. Guo L et al. A numerical investigation on quasi-static configuration and nonlinear dynamic response characteristics of marine towing cable. Ocean Eng. 2021, Vol. 240, p. 110007. https://doi.org/10.1016/j.oceaneng.2021.110007
  12. Sun FJ, Zhu ZH, LaRosa M. Dynamic modeling of cable towed body using nodal position finite element method. Ocean Eng. 2011, Vol. 38, pp. 529-540. https://doi.org/10.1016/j.oceaneng.2010.11.016
  13. Lalu PP, Narayanan KP. Numerical simulation of two-part underwater towing system [Dissertation]. 2013. Cochin University of Science and Technology. http://dyuthi.cusat.ac.in/purl/3751
  14. Minowa A, Toda M. Stability analyses on a towed underwater vehicle motion control system using a high-gain observer. Adv. Control Appl. Eng. Ind. Syst. 2021, Vol. 3, p. e77. https://doi.org/10.1002/adc2.77
  15. Yang S, Zhu X, Ren H. Dynamic analysis of a deep-towed seismic system based on a flexible multi-body dynamics frame. Ocean Eng. 2023, Vol. 279, p. 114587. https://doi.org/10.1016/j.oceaneng.2023.114587
  16. Guo L et al. Experimental investigation on vortex-induced vibration of marine towing cable with suppression device. Ocean Eng. 2023, Vol. 269, p. 113531. https://doi.org/10.1016/j.oceaneng.2022.113531
  17. Guo L et al. Numerical investigation and arrangement optimization on VIV response of marine towing cable with suppression device. Mar. Struct. 2024, Vol. 95, p. 103598. https://doi.org/10.1016/j.marstruc.2024.103598
  18. Guo L et al. Experimental investigation on nonlinear dynamic response of towing cable under vessel motion. Ocean Eng. 2022, Vol. 266, p. 113170. https://doi.org/10.1016/j.oceaneng.2022.113170
  19. Zheng H, Wang J. A numerical study on the vortex-induced vibration of flexible cylinders covered with differently placed buoyancy modules. J. Fluids Struct. 2021, Vol. 100, p. 103174. https://doi.org/10.1016/j.jfluidstructs.2020.103174
  20. Wang G, Rong B, Tao L, Rui X. Riccati discrete time transfer matrix method for dynamic modeling and simulation of an underwater towed system. ASME J. Appl. Mech. 2012, Vol. 79, p. 041014. https://doi.org/10.1115/1.4006237
  21. Fritzson P, Pop A, Aronsson P et al. OpenModelica users guide. Simulation 2006, Vol. 82, pp. 109-150. http://www.ida.liu.se/projects/OpenModelica
  22. Younesian D, Esmailzadeh E, Sedaghati R. Passive vibration control of beams subjected to random excitations with peaked PSD. J. Vib. Control. 2006, Vol. 12, pp. 941-953. https://doi.org/10.1177/1077546306068060
DOI: https://doi.org/10.2478/pomr-2025-0036 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 66 - 78
Published on: Aug 12, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Yingyuan Tian, Yaxun Chen, Yang Qi, Yunfei Lv, Weijia Li, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.