References
- A. Bhatti, Z. Barsoum, H. Murakawa, and I. Barsoum, “Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion,” Materials and Design, vol. 65, pp. 878–889, Jan. 2014, doi: 10.1016/j.matdes.2014.10.019.
- G. Fu, M. I. Lourenco, M. Duan, and S. F. Estefen, “Effect of boundary conditions on residual stress and dis-tortion in T-joint welds,” J Constr Steel Res, vol. 102, pp. 121–135, 2014, doi: 10.1016/j.jcsr.2014.07.008.
- R. M. F. Paulo, F. Teixeira-Dias, and R. A. F. Valente, “Numerical simulation of aluminium stiffened panels subjected to axial compression: Sensitivity analyses to initial geometrical imperfec-tions and material properties,” Thin-Walled Structures, vol. 62, pp. 65–74, 2013, doi: https://doi.org/10.1016/j.tws.2012.07.024.
- L. Wei and D. Deng, “Influences of heat input, welding sequence and external restraint on twist-ing distortion in an asymmetrical curved stiffened panel,” Advances in Engineering Software, vol. 115, pp. 439–451, Jan. 2018, doi: https://doi.org/10.1016/j.advengsoft.2017.11.002.
- W. Liang, X. Hu, Y. Zheng, and D. Deng, “Determining inherent deformations of HSLA steel T-joint under structural constraint by means of thermal elastic plastic FEM,” Thin-Walled Structures, vol. 147, Feb. 2020, doi: 10.1016/j.tws.2019.106568.
- T. Urbański, A. Banaszek, and W. Jurczak, “Prediction of Welding-Induced Distortion of Fixed Plate Edge Using Design of Experiment Approach,” Polish Maritime Research, vol. 27, no. 1, pp. 134–142, Mar. 2020, doi: 10.2478/pomr-2020-0014.
- D. L. Chandramohan, K. Roy, H. Taheri, M. Karpenko, Z. Fang, and J. B. P. Lim, “A State of the Art Review of Fillet Welded Joints,” Materials, vol. 15, no. 24, pp. 1–31, Dec. 2022, doi: 10.3390/ma15248743.
- M. S. Zhao, C. K. Lee, T. C. Fung, and S. P. Chiew, “Impact of welding on the strength of high performance steel T-stub joints,” Journal of Constructional Steel Research, vol. 131, pp. 110–121, Apr. 2017, doi: 10.1016/j.jcsr.2016.12.023.
- B. de Meester, “The weldability of modern structural TMCP steels,” ISIJ International, vol. 37, pp. 537–551, 1997, doi: https://doi.org/10.2355/isijinternational.37.537.
- R. Kamal Kassab, H. Champliaud, N. Van Lê, J. Lanteigne, and M. Thomas, “Experimental and Finite Ele-ment Analysis of a T-Joint Welding,” Journal of Mechanics Engineering and Automation, vol. 2, pp. 411-421, 2012. doi: https://doi.org/10.17265/2159-5275/2012.07.002.
- G. Fu, M. I. Lourenço, M. Duan, and S. F. Estefen, “Influence of the welding sequence on re-sidual stress and distortion of fillet welded structures,” Marine Structures, vol. 46, pp. 30–55, Mar. 2016, doi: 10.1016/j. marstruc.2015.12.001.
- Z. Li, G. Feng, D. Deng, and Y. Luo, “Investigating Welding Distortion of Thin-Plate Stiffened Panel Steel Structures by Means of Thermal Elastic Plastic Finite Element Method,” Journal of Mate-rials Engineering and Performance, vol. 30, no. 5, pp. 3677–3690, May 2021, doi: 10.1007/s11665-021-05646-y.
- Y. Martínez and R. Collazo, “Review of the effects of welding parameters on residual stresses of the process,” Engineering Research Report, vol. 16, pp. 85–98, 2018, doi: https://hdl.handle.net/20.500.12806/2475.
- J. Kozak, “Prediction of Weld Deformations by Numerical Methods-Review,” Polish Maritime Research, vol. 29, no. 1, pp. 97–107, Mar. 2022, doi: 10.2478/pomr-2022-0010.
- G. Di Bella, M. Chairi, A. Denaro, and A. Bado, “Effect of Surface Treatment on Tensile Strength of Steel Single Lap Joints Bonded with Double-Sided Acrylic Foam Tapes for Naval Appli-cations,” Metals (Basel), vol. 14, no. 9, Sep. 2024, doi: 10.3390/met14091071.
- C. Borsellino, F. Favaloro, and G. Di Bella, “Durability of Single Lap Friction Stir Welded Joints between S355-J0 Steel and AA5083 Aluminum Alloy–Mechanical Tests,” Metals (Basel), vol. 14, no. 2, Feb. 2024, doi: 10.3390/met14020137.
- Hexagon AB, “MSC Patran,” 2024.
- Hexagon AB, “Simufact Welding,” 2024.
- J. Goldak, A. Chakravarti, and M. Bibby, “A New Finite Element Model For Welding Heat Sources,” Metal-lurgical Transactions B, vol. 15, pp. 299–305, 1984, doi: https://doi.org/10.1007/BF02667333.
- H. Ruiz, N. Osawa, L. De Gracia, and S. Rashed, “Study on the Stability of Compressive Resid-ual Stress In-duced by High Frequency Mechanical Impact under Cyclic Loadings with Spike Loads,” Weld World, vol. 64, pp. 1855–1865, 2020, doi: https://doi.org/10.1007/s40194-020-00965-5.
- P. Michaleris, “Minimization of Welding Distortion and Buckling,” in Minimization of Welding Distortion and Buckling: Modelling and Implementation, Woodhead Publising Limited, 2011, pp. 3–289. doi: 10.1533/9780857092908.1.3.
- K. Satoh and T. Terasaki, “Effect of Welding Conditions on Residual Stresses Distributions and Welding De-formation in Welded Structures Materials,” Quarterly Journal of Japan Welding Society, vol. 45, pp. 150–156, 1976, doi: ISOPE-I-02-443.
- G. Marquis and Z. Barsoum, “A Guideline for Fatigue Strength Improvement of High Strength Steel Welded Structures Using High Frequency Mechanical Impact Treatment,” Procedia Eng, vol. 66, pp. 98–107, 2013, doi: https://doi.org/10.1016/j.proeng.2013.12.066.
- K. Anami, C. Miki, H. Tani, and H. Yamamoto, “Improving Fatigue Strength of Welded Joints by Hammer Peening and TIG-Dressing,” Structural Engineering, vol. 17, no. 1, pp. 57–68, Apr. 2000, doi: https://doi.org/10.2208/jscej.2000.647_67.
- G. Marquis, E. Mikkola, H. Yildirim, and Z. Barsoum, “Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed fatigue assessment guidelines,” Welding in the world, vol. 57, pp. 803–822, 2013, doi: http://dx.doi.org/10.1007/s40194-013-0075-x.
- H. C. Yildirim and G. Marquis, “Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact,” International Journal of Fatigue, vol. 44, pp. 168–176, 2012, doi: https://doi.org/10.1016/j.ijfatigue.2012.05.002.
- M. Tai and C. Miki, “Fatigue strength improvement by hammer peening treatment - Verification from plastic deformation, residual stress, and fatigue crack propagation rate,” Welding in the world, vol. 58, pp. 307–318, 2014, doi: https://doi.org/10.1007/s40194-014-0115-1.
- H. C. Yildirim, G. Marquis, and Z. Barsoum, “Fatigue assessment of high frequency mechanical impact (HFMI)-improved fillet welds by local approaches,” International Journal of Fatigue, vol. 52, pp. 57–67, 2013, doi: https://doi.org/10.1016/j.ijfatigue.2013.02.014.
- C. Tsai, M. Tsai, and R. B. McCauley, “Stress Analysis and Design of Double Fillet-Welded T-Joints” Welding Research Supplement, vol. 77, no. 2, pp. 94–102, Feb. 1998.
- D. Deng, W. Liang, and H. Murakawa, “Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements,” Journal of Materials Processing Technology, vol. 183, no. 2–3, pp. 219–225, Mar. 2007, doi: 10.1016/j.jmatprotec.2006.10.013.