Have a personal or library account? Click to login
Computational Evaluation of the Limiting Thrust of the Peripheral Thruster Taking into Account the Propeller Blade Yield Stress and the Thrust Breakdown Due to Cavitation Cover

Computational Evaluation of the Limiting Thrust of the Peripheral Thruster Taking into Account the Propeller Blade Yield Stress and the Thrust Breakdown Due to Cavitation

Open Access
|Jun 2025

References

  1. Wikipedia, Voith Schneider Propeller, 09.05.2024. Retrieved from https://en.wikipedia.org/wiki/Voith_Schneider_Propeller
  2. Wikipedia, Pump-jet, 09.05.2024, Retrieved from https://en.wikipedia.org/wiki/Pump-jet
  3. Kongsberg, Super silent tunnel thruster, 09.05.2024, Retrieved from https://www.kongsberg.com/maritime/products/propulsors-and-propulsion-systems/thrusters/super-silent-tunnel-thruster/
  4. Wikipedia, Rim-driven thruster, 09.05.2024, Retrieved from https://en.wikipedia.org/wiki/Rim-driven_thruster
  5. Det Norske Veritas, “Assessment of station keeping capability of dynamic positioning vessels”. Standard No. DNV-ST-0111, December 2021.
  6. Maritime Advanced Research Centre CTO S.A. Experimental analysis of the hydrodynamic characteristics of the peripheral thruster. Technical Report, March 2022.
  7. Huang Y., Chen L., Chen P., Negenborn RR, van Gelder PHAJM. Ship collision avoidance methods: State-of-the-art. Safety Science 2020, vol. 121, pp. 451–473. ISSN 0925-7535. https://doi.org/10.1016/j.ssci.2019.09.018.
  8. Lindau JW, Boger DA, Medvitz RB, Kunz RF. Propeller cavitation breakdown analysis. J Fluids Eng. 2005, vol. 127, pp. 995–1002. doi: 10.1115/1.1988343.
  9. Rehman S, Wajiha S, Paboeuf J. A comparison of different fluid-structure interaction analysis techniques for the marine propeller. ASME 2021 Power Conference. doi: 10.1115/POWER2021-64369.
  10. Savio L, Sileo L, Ås SK. A comparison of physical and numerical modeling of homogenous isotropic propeller blades. J Mar Sci Eng 2020, vol. 8, p. 21. doi: 10.3390/jmse8010021.
  11. Schneider T, Hu Y, Gao X, Dumas J, Zorin D, Panozzo D. A large scale comparison of tetrahedral and hexahedral elements for solving elliptic PDEs with finite element ACM Trans. Graph. 41, 3, Article 23 (June 2022). https://doi.org/10.1145/3508372.
  12. Shayanpoor A, Hajivand A, Moore M. Hydroelastic analysis of composite marine propeller basis fluid-structure interaction (FSI), Int J Marit Technol, 2020, vol. 13, pp. 51–59.
  13. Young YL. Time-dependent hydroelastic analysis of cavitating propulsors. Journal of Fluids and Structures 2007, vol. 23, no. 2, pp. 269–295. ISSN 0889-9746. https://doi.org/10.1016/j.jfluidstructs.2006.09.003.
  14. Magionesi F, Dubbioso G, Muscari R. Fluid–structure interaction of a marine rudder at incidence in the wake of a propeller. Phys Fluids 2024, vol. 36. doi: 10.1063/5.0201867.
  15. Schnerr GH, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics. Fourth International Conference on Multiphase Flow, 2001, ICMF New Orleans.
DOI: https://doi.org/10.2478/pomr-2025-0025 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 106 - 114
Published on: Jun 19, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marek Kraskowski, Paweł Dymarski, Czesław Dymarski, Włodzimierz Hebel, Paweł Łuniewski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.