References
- United Nations Environment Programme, International Resource Panel. Global Resources Outlook 2024 - Bend the trend: Pathways to a liveable planet as resource use spikes. 2024. https://wedocs.unep.org/20.500.11822/44901.
- United Nations Environment Programme. Emissions Gap Report 2023: Broken record – Temperatures hit new highs, yet world fails to cut emissions (again). 2023. https://wedocs.unep.org/20.500.11822/43922.
- IMO strategy on reduction of GHG emissions from ships. 2023. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx.
- Balcombe P, Brierley J, Lewis C, Skatvedt L, Speirs J, Hawkes AA, Staell I. How to decarbonize international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019. https://doi.org/10.1016/j.enconman.2018.12.080.
- Joung TH, Kang SG, Lee JK, Ahn J. The IMO initial strategy for reducing greenhouse gas (GHG) emissions, and its follow-up actions towards 2050. Journal of International Maritime Safety, Environmental Affairs, and Shipping 2020. https://doi.org/10.1080/25725084.2019.1707938.
- Forman C, Pardemann MI, Muritala IK, Meyer B. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews 2016. https://doi.org/10.1016/j.rser.2015.12.192.
- Kuznetsov V, Kuznetsova S. Increasing the economic efficiency of marine power plants using waste heat boilers with controlled flow separation. Polish Maritime Research 2024. https://doi.org/10.2478/pomr-2024-0039.
- Hoang AT. Waste heat recovery from diesel engines based on organic Rankine cycle. Applied Energy 2018. https://doi:10.1016/apenergy.2018.09.02.
- Van Hoecke L, Laffineur L, Campe R, Perreault P, Verbruggen SW, Lenaerts S. Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 2021. http://dx.doi.org/10.1039/D0EE01545H.
- Bao G, Qin W, Jiang Q, Pu C. Study of predictive control model for cooling process of Mark III LNG bunker. Polish Maritime Research 2024. https://doi.org/10.2478/pomr-2024-0040.
- Serbin S, Burunsuz K, Chen D, Kowalski J. Investigation of the characteristics of a low-emission gas turbine combustion chamber operating on a mixture of natural gas and hydrogen. Polish Maritime Research 2022. https://doi.org/10.2478/pomr-2022-0018.
- Chen D, Serbin S, Burunsuz K. Features of a gas turbine combustion chamber in operation with gaseous ammonia. Fuel 2024. https://doi.org/10.1016/j.fuel.2024.132149.
- Kunicka M. Optimisation of the energy consumption of a small passenger ferry with hybrid propulsion. Polish Maritime Research 2024. https://doi.org/10.2478/pomr-2024-0023.
- Radchenko R, Radchenko A, Serbin S, Kantor S, Portnoi B. Gas turbine unite inlet air cooling by using an excessive refrigeration capacity of absorption-ejector chiller in booster air cooler. E3S Web of Conferences 2018. https://doi.org/10.1051/e3sconf/20187003012.
- Cherednichenko O, Serbin S. Analysis of efficiency of the ship propulsion system with thermochemical recuperation of waste heat. Journal of Marine Science and Application 2018. https://doi.org/10.1007/s11804-018-0012-x.
- Haglind F, Montagud MEM, Andreasen JG, Pierobon L, Meroni A. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC). Technical University of Denmark, 2017. https://backend.orbit.dtu.dk/ws/portalfiles/portal/134764999/Final_Report_PilotORC.pdf.
- Sellers C. Field operation of a 125kW ORC with ship engine jacket water. Energy Procedia 2017. https://doi.org/10.1016/j.egypro.2017.09.168.
- Konur O, Colpan CO, Saatcioglu OY. A comprehensive review on organic Rankine cycle systems used as waste heat recovery technologies for marine applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022. https://doi.org/10.1080/15567036.2022.2072981.
- Swift GW. Thermoacoustic: A unifying perspective for some engines and refrigerators. American Inst. of Physics; 2002.
- Ward B, Clark J, Swift G. Design environment for low-amplitude thermoacoustic energy conversion version 6.4b2 user’s guide. Los Alamos National Laboratory, Los Alamos, NM; 2016.
- Timmer MAG, de Blok K, van der Meer TH. Review on the conversion of thermoacoustic power into electricity. J. Acoust. Soc. Am. 2018. https://doi.org/10.1121/1.5023395.
- Korobko V, Serbin S, Le HC. Exploration of a model thermoacoustic turbogenerator with a bidirectional turbine. Polish Maritime Research 2023. https://doi.org/10.2478/pomr-2023-0063.
- Yang Z, Korobko V, Radchenko M, Radchenko R. Improving thermoacoustic low-temperature heat recovery systems. Sustainability 2022. https://doi.org/10.3390/su141912306.
- Korobko V, Shevtsov A, Serbin S, Wen H, Dzida M. Impact of the type of heat exchanger on the characteristics of low-temperature thermoacoustic heat engines. International Journal of Thermofluids 2024. https://doi.org/10.1016/j.ijft.2024.100953.
- Qiu L, Lou P, Wang K, et al. Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen. Chin. Sci. Bull. 2013. https://doi.org/10.1007/s11434-012-5214-z.
- Tsuda K, Ueda Y. Critical temperature of traveling- and standing-wave thermoacoustic engines using a wet regenerator. Applied Energy 2017. https://doi.org/10.1016/j.apenergy.2017.04.004.
- Offner A, Yang R, Felman D, Elkayam N, Agnon Y, Ramon GZ. Acoustic oscillations driven by boundary mass exchange. Journal of Fluid Mechanics 2019. https://doi.org/10.1017/jfm.2019.87.
- Raspet R, Slaton WV, Hickey CJ, Hiller RA. Theory of inert gas-condensing vapor thermoacoustics: Propagation equation. J. Acoust. Soc. Am. 2002. https://doi.org/10.1121/1.1508113.
- Slaton WV, Raspet R, Hickey CJ, Hiller RA. Theory of inert gas-condensing vapor thermoacoustics: Transport equations. J. Acoust. Soc. Am. 2002. https://doi.org/10.1121/1.1508114.
- Senga M, Hasegawa S. Energy conversion of thermoacoustic engines with evaporation and condensation. International Journal of Heat and Mass Transfer 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120385.
- Brustin T, Offner A, Ramon GZ. Effect of gas mixture on temperature and mass streaming in a phase-change thermoacoustic engine. Appl. Phys. Lett. 2020. https://doi.org/10.1063/5.0009599.
- Yang R, Meir A, Ramon GZ. Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery. Appl. Energy 2020. https://doi.org/10.1016/j.apenergy.2019.114377.
- Yang R, Meir A, Ramon GZ. A standing-wave, phase-change thermoacoustic engine: Experiments and model projections. Energy 2022. https://doi.org/10.1016/j.energy.2022.124665.
- Moradi A, Bahrami M, Ommi F, et al. Start-up and damping of a standing wave thermoacoustic engine: Model development and experimental evaluation. Heat Mass Transfer 2022. https://doi.org/10.1007/s00231-022-03235-w.
- Meir A, Offner A, Ramon GZ. Low-temperature energy conversion using a phase-change acoustic heat engine. Applied Energy 2018. https://doi.org/10.1016/j.apenergy.2018.09.124.
- Huang J, Yang R, Yang Y, Zhou Q, Luo E. Generalized thermoacoustic heat engines with unconventional working substances: A review. Applied Energy 2023. https://doi.org/10.1016/j.apenergy.2023.121447.
- Biwa T, Tashiro Y, Nomura H, Ueda Y, Yazaki T. Acoustic intensity measurement in a narrow duct by a two-sensor method. Rev. Sci. Instrum. 2007.
- Kondratenko Y, Korobko O, Korobko V. Microprocessor system for thermoacoustic plants efficiency analysis based on a two-sensor method. Sensors & Transducers 2013. https://www.academia.edu/95466184/Microprocessor_System_for_Thermoacoustic_Plants_EfficiencyAnalysis_Based_on_a_Two_Sensor_Method.