Have a personal or library account? Click to login
Innovative 3D Measuring Technique for Identifying Geometrical Imperfections and Wear in Small Marine Stern Tube Liners Cover

Innovative 3D Measuring Technique for Identifying Geometrical Imperfections and Wear in Small Marine Stern Tube Liners

Open Access
|Mar 2025

References

  1. Etkin D S. Worldwide analysis of in-port vessel operational lubricant discharges and leakages. In 33rd AMOP Technical Seminar on Environmental Contamination and Response, 2010, 1–25.
  2. National Pollutant Discharge Elimination System (NPDES) Vessel General Permit (VGP) and Small Vessel General Permit (sVGP), vol. 502, November. US Environmental Protection Agency (EPA), 2013.
  3. Qin H, Zhou X, Zhao X, Xing J, Yan Z. A new rubber/UHMWPE alloy for water-lubricated stern bearings. Wear 328–329, 257–261, 2015. https://doi.org/10.1016/j.wear.2015.02.016
  4. Prehn R, Haupert F, Friedrich K. Sliding wear performance of polymer composites under abrasive and water lubricated conditions for pump applications. Wear 259(1–6), 693–696, 2005. https://doi.org/10.1016/j.wear.2005.02.054
  5. Zero oil means zero enviromental impact. Nav Archit 5, 32–36, 2012.
  6. Borras F X, van den Nieuwendijk R, Ramesh V, de Rooij M B, Schipper D J. Stern tube seals operation: A practical approach. Adv Mech Eng 13(2), 1–14, 2021. https://doi.org/10.1177/1687814021994404
  7. Borras F X, de Rooij M B, Schipper D J. Rheological and wetting properties of environmentally accepTable lubricants (EALs) for application in stern tube seals. Lubricants 6(4), 2018. https://doi.org/10.3390/lubricants6040100
  8. Frost J, Litwin W. Comparative wear test of journal sliding bearings with sintered bronze and Babbitt alloy bushes lubricated by environmentally acceptable/adapted lubricants (EAL). Tribol Trans 7–8, 2022, https://dx.doi.org/10.1080/10402004.2022.2155281
  9. American Bureau of Shipping. Guidance notes on propulsion shafting alignment. ABS Classif. Soc. Rules, September, p. 156, 2019.
  10. Belioka M P, Achilias D S. Microplastic pollution and monitoring in seawater and harbor environments: A meta-analysis and review. Sustain 15(11), 2023. https://doi.org/10.3390/su15119079‘
  11. Simon-Sánchez L, Vianello A, Kirstein I V, Molazadeh M S, Lorenz C, Vollertsen J. Assessment of microplastic pollution and polymer risk in the sediment compartment of the Limfjord, Denmark. Sci Total Environ 950(April), 2024. https://doi.org/10.1016/j.scitotenv.2024.175017
  12. Kushwaha M et al. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. Mar Pollut Bull 209(PA), 117109, 2024. https://doi.org/10.1016/j.marpolbul.2024.117109
  13. Mohammad N E, Mumtahina R, Pervez M N, Khyum M M O, Liang Y, Naddeo V. Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Sci Total Environ 878(1), 88–100, 2023. https://doi.org/10.1016/j.scitotenv.2023.163123
  14. Katherine E P, McKnight T, Reade A. 70 analyte PFAS test method highlights need for expanded testing of PFAS in drinking water. Sci Total Environ 878(1), 88–100, 2023, https://doi.org/10.1016/j.scitotenv.2023.162978
  15. Pengampu D. State of the Art: Shafts algiment. DNV Confid., 2013.
  16. Bouyer J, Fillon M. An Experimental analysis of misalignment effects on hydrodynamic plain journal bearing performances. J Tribol 124(2), 313, 2002. https://doi.org/10.1115/1.1402180
  17. Growing attention to alignment. Nav Archit (2), 60–61, 2007.
  18. Erlend Hanssen Nervol Ø Å A. Ensuring satisfactory aft stern tube bearing lubrication performance. LUBE Mag 154, 14–17, 2019 [Online]. Available: https://www.dnvgl.com/expert-story/maritime-impact/Ensuring-satisfactory-aft-stern-tube-bearing-lubrication-performance.html
  19. Time F et al. Major findings of EAL study DNV. DNV GL Tech. Regul. NEWS 33(1), 1–12, 2019 [Online]. Available: https://www.dnv.com/expert-story/maritime-impact/Major-findings-of-EAL-study.html
  20. Nikolakopoulos P G, Papadopoulos C A. A study of friction in worn misaligned journal bearings under severe hydrodynamic lubrication. Tribol Int 41(6), 461–472, 2008. https://doi.org/10.1016/j.triboint.2007.10.005
  21. Litwin W. Water lubricated marine stern tube bearings— Attempt at estimating hydrodynamic capacity. In Proceedings of the ASME/STLE International Joint Tribology Conference 2009, Memphis, IJTC2009, 2010. https://doi.org/10.1115/IJTC2009-15068
  22. van der Meer G H G, Quinci F, Litwin W, Wodtke M, van Ostayen R A J. Experimental comparison of the transition speed of a hydrodynamic journal bearing lubricated with oil and magnetorheological fluid. Tribol Int 189(July), 108976, 2023. https://doi.org/10.1016/j.triboint.2023.108976
  23. Litwin W, Wasilczuk M, Wodtke M, Olszewski A. The influence of polymer bearing material and lubricating grooves layout on wear of journal bearings lubricated with contaminated water. Tribiology Int 179(December 2022), 11, 2023. https://doi.org/10.1016/j.triboint.2022.108159
  24. Litwin W, Kropp S. Sliding bearings with sintered bronze bush lubricated by contaminated water with solid particles— Theoretical and experimental studies. Wear 532–533(June), 205070, 2023. https://doi.org/10.1016/j.wear.2023.205070
  25. Niemczewska-Wójcik M, Wójcik A. Measurement techniques used for analysis of the geometric structure of machined surfaces. In 11th IMEKO TC14 Symp. Laser Metrol. Precis. Meas. Insp. Ind. LMPMI 2014 5(2), 199–202, 2014, https://doi.org/10.2478/mper-2014-0014
  26. Pawlus P, Reizer R, Wieczorowski M. Problem of non-measured points in surface texture measurements. Metrol Meas Syst 24(3), 525–536, 2017. https://doi.org/10.1515/mms-2017-0046
  27. Niemczewska-Wójcik M, Madej M, Kowalczyk J, Piotrowska K. A comparative study of the surface topography in dry and wet turning using the confocal and interferometric modes. Meas J Int Meas Confed 204(November) 2022. https://doi.org/10.1016/j.measurement.2022.112144
  28. Peng R, Liu J, Fu X, Liu C, Zhao K. Application of machine vision method in tool wear monitoring. Int J Adv Manuf Technol 116(3–4), 1357–1372, 2021. https://doi.org/10.1007/s00170-021-07522-4
  29. Hu F, Ning C, Ouyang W. Ultrasonic in-situ measurement method and error analysis of wear of PEEK water-lubricated bearing materials. Meas J Int Meas Confed 214, 1–9, 2023. https://doi.org/10.1016/j.measurement.2023.112822
  30. Gertzos K P, Nikolakopoulos P G, Chasalevris A C, Papadopoulos C A. Wear identification in rotor-bearing systems by volumetric and bearing performance characteristics measurements. Comput Struct 88, 1–12, 2008. https://doi.org/10.4203/ccp.88.120
  31. Bills P J, et al. Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty. Wear 274–275, 212–219, 2012. https://doi.org/10.1016/j.wear.2011.08.030
  32. Tuke M, Taylor A, Roques A, Maul C. 3D linear and volumetric wear measurement on artificial hip joints—Validation of a new methodology. Precis Eng 34(4), 777–783, 2010. https://doi.org/10.1016/j.precisioneng.2010.06.001
  33. Archard J F, Hirst W. The wear of metals under unlubricated conditions. Proc R Soc London Ser A Math Phys Sci 236(1206), 397–410, 1956. https://doi.org/10.1098/rspa.1956.0144
DOI: https://doi.org/10.2478/pomr-2025-0013 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 129 - 136
Published on: Mar 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Tomasz Żochowski, Wojciech Litwin, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.