References
- Nguyen HP, Nguyen CTU, Tran TM, Dang QH, Pham NDK. Artificial intelligence and machine learning for green shipping: Navigating towards sustainable maritime practices. JOIV Int J Informatics Vis 2024;8:1. https://doi.org/10.62527/joiv.8.1.2581.
- Duc BV, Nguyen HP. A comprehensive review on big data-based potential applications in marine shipping management. Int J Adv Sci Eng Inf Technol 2021;11:1067–77.
- UNCTAD. Review of Maritime Report 2021. 2021.
- Zeńczak W, Gromadzińska AK. Preliminary analysis of the use of solid biofuels in a ship’s power system. Polish Marit Res 2020;27:67–79. https://doi.org/10.2478/pomr-2020-0067.
- Hoang AT, Foley AM, Nižetić S, Huang Z, Ong HC, Ölçer AI, et al. Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. J Clean Prod 2022;355:131772. https://doi.org/10.1016/j.jclepro.2022.131772.
- Vakili S, Ölçer AI, Schönborn A, Ballini F, Hoang AT. Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study. Int J Energy Res 2022;46:20624–49. https://doi.org/10.1002/er.7649.
- Su W, Zhang Q, Liu Y. Event-triggered adaptive neural network trajectory tracking control for underactuated ships under uncertain disturbance. Polish Marit Res 2023;30:119–31. https://doi.org/doi:10.2478/pomr-2023-0045.
- Sahnen D, Harmsen J, Nesterova N, Bekdemir C, Van Kranenburg K, Andersson K, et al. Reducing sulphur emissions from ships - The impact of international regulation. Int J Hydrogen Energy 2020;12:32–5.
- Le TT, Sharma P, Pham NDK, Le DTN, Le VV, Osman SM, et al. Development of comprehensive models for precise prognostics of ship fuel consumption. J Mar Eng Technol 2024:1–15. https://doi.org/10.1080/20464177.2024.2372888.
- Hoang AT, Tran VD, Dong VH, Le AT. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. J Mar Eng Technol 2022;21:73–81. https://doi.org/10.1080/20464177.2019.1595355.
- Nguyen VN, Chung N, Balaji GN, Rudzki K, Hoang AT. Internet of things-driven approach integrated with explainable machine learning models for ship fuel consumption prediction. Alexandria Eng J 2025;118:664- 80. https://doi.org/10.1016/j.aej.2025.01.067.
- Nguyen HP, Hoang AT, Nizetic S, Nguyen XP, Le AT, Luong CN, et al. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. Int Trans Electr Energy Syst 2021;31:e12580. https://doi.org/10.1002/2050-7038.12580.
- Mallouppas G, Yfantis EA. Decarbonization in shipping industry: A review of research, technology development, and innovation proposals. J Mar Sci Eng 2021;9:415. https://doi.org/10.3390/jmse9040415.
- Herdzik J. Decarbonization of marine fuels—The future of shipping. Energies 2021;14:4311. https://doi.org/10.3390/en14144311.
- Hoang AT, Pandey A, Martinez De Osés FJ, Chen W-H, Said Z, Ng KH, et al. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renew Sustain Energy Rev 2023;188:113790. https://doi.org/10.1016/j.rser.2023.113790.
- IMO. Fourth IMO GHG Study 2020 full report. Int Marit Organ 2021;6:524.
- Chen Y, Sun B, Xie X, Li X, Li Y, Zhao Y. Short-term forecasting for ship fuel consumption based on deep learning. Ocean Eng 2024;301:117398. https://doi.org/10.1016/j.oceaneng.2024.117398.
- Mantoju CD. Analysis of MARPOL implementation based on port state control statistics. J Int Marit Safety, Environ Aff Shipp 2021;5:132–45. https://doi.org/10.1080/25725084.2021.1965281.
- Schinas O, Stefanakos CN. Selecting technologies towards compliance with MARPOL Annex VI: The perspective of operators. Transp Res Part D Transp Environ 2014;28:28–40. https://doi.org/10.1016/j.trd.2013.12.006.
- Hussain N, Khan A, Shumaila, Memon S. Addressing marine pollution: An analysis of MARPOL 73/78 regulations and global implementation efforts. J Soc Sci Rev 2023;3:572–89. https://doi.org/10.54183/jssr.v3i1.193.
- Čampara L, Hasanspahić N, Vujičić S. Overview of MARPOL ANNEX VI regulations for prevention of air pollution from marine diesel engines. SHS Web Conf 2018;58:01004. https://doi.org/10.1051/shsconf/20185801004.
- MEPC. MEPC 67 October 2014.
- Chircop A. The IMO initial strategy for the reduction of GHGs from international shipping: A commentary. Int J Mar Coast Law 2019;34:482–512. https://doi.org/10.1163/15718085-13431093.
- Joung T-H, Kang S-G, Lee J-K, Ahn J. The IMO initial strategy for reducing greenhouse gas (GHG) emissions, and its follow-up actions towards 2050. J Int Marit Safety, Environ Aff Shipp 2020;4:1–7. https://doi.org/10.1080/25725084.2019.1707938.
- Nguyen VN, Rudzki K, Dzida M, Pham NDK, Pham MT, Nguyen PQP, et al. Understanding fuel saving and clean fuel strategies towards green maritime. Polish Marit Res 2023;30:146–64. https://doi.org/10.2478/pomr-2023-0030.
- Ghaemi MH, Zeraatgar H. Impact of propeller emergence on hull, propeller, engine, and fuel consumption performance in regular head waves. Polish Marit Res 2022;29:56–76. https://doi.org/10.2478/pomr-2022-0044.
- Korczewski Z. Energy and emission quality ranking of newly produced low-sulphur marine fuels. Polish Marit Res 2022;29:77–87. https://doi.org/10.2478/pomr-2022-0045.
- Zhang M, Tsoulakos N, Kujala P, Hirdaris S. A deep learning method for the prediction of ship fuel consumption in real operational conditions. Eng Appl Artif Intell 2024;130:107425. https://doi.org/10.1016/j.engappai.2023.107425.
- Agand P, Kennedy A, Harris T, Bae C, Chen M, Park EJ. Fuel consumption prediction for a passenger ferry using machine learning and in-service data: A comparative study. Ocean Eng 2023;284:115271. https://doi.org/10.1016/j.oceaneng.2023.115271.
- Chen ZS, Lam JSL, Xiao Z. Prediction of harbour vessel fuel consumption based on machine learning approach. Ocean Eng 2023;278:114483. https://doi.org/10.1016/j.oceaneng.2023.114483.
- Yan R, Wang S, Du Y. Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship. Transp Res Part E Logist Transp Rev 2020;138:101930. https://doi.org/10.1016/j.tre.2020.101930.
- Rudzki K, Gomulka P, Hoang AT. Optimization model to manage ship fuel consumption and navigation time. Polish Marit Res 2022;29:141–53. https://doi.org/10.2478/pomr-2022-0034.
- Shanmugasundar G, Vanitha M, Čep R, Kumar V, Kalita K, Ramachandran M. A comparative study of linear, random forest and AdaBoost regressions for modeling non-traditional machining. Processes 2021;9:2015. https://doi.org/10.3390/pr9112015.
- Quirk TJ. Correlation and simple linear regression. Excel 2016 Appl. Stat. High Sch. Students, Cham: Springer International Publishing; 2018, pp. 107–52. https://doi.org/10.1007/978-3-319-89993-0_6.
- Breiman L. Random forests. Mach Learn 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.
- Gnecco N, Terefe EM, Engelke S. Extremal random forests. J Am Stat Assoc 2024:1–24. https://doi.org/10.1080/01621459.2023.2300522.
- Speiser JL, Miller ME, Tooze J, Ip E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst Appl 2019;134:93–101. https://doi.org/10.1016/j.eswa.2019.05.028.
- Sprenger M, Schemm S, Oechslin R, Jenkner J. Nowcasting Foehn wind events using the AdaBoost machine learning algorithm. Weather Forecast 2017;32:1079–99. https://doi.org/10.1175/WAF-D-16-0208.1.
- Kyeremeh F, Zhi F, Yi Y, Gyamfi E, Nti IK. Solar PV power forecasting with a hybrid LSTM-AdaBoost ensemble. 2022 IEEE/IET Int. Util. Conf. Expo., IEEE; 2022, pp. 1–7. https://doi.org/10.1109/IUCE55902.2022.10079424.
- Chen T, Guestrin C. XGBoost. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., New York, NY, USA: ACM; 2016, pp. 785–94. https://doi.org/10.1145/2939672.2939785.
- Darmawan H, Yuliana M, Hadi MZS. GRU and XGBoost performance with hyperparameter tuning using GridSearchCV and Bayesian optimization on an IoT-based weather prediction system. Int J Adv Sci Eng Inf Technol 2023;13:848–59. https://doi.org/10.18517/ijaseit.13.3.18377.
- Abdi J, Hadavimoghaddam F, Hadipoor M, Hemmati-Sarapardeh A. Modeling of CO2 adsorption capacity by porous metal organic frameworks using advanced decision tree-based models. Sci Rep 2021;11:24468. https://doi.org/10.1038/s41598-021-04168-w.
- Sagi O, Rokach L. Approximating XGBoost with an interpretable decision tree. Inf Sci (Ny) 2021;572:522–42. https://doi.org/10.1016/j.ins.2021.05.055.
- Jumin E, Basaruddin FB, Yusoff YBM, Latif SD, Ahmed AN. Solar radiation prediction using boosted decision tree regression model: A case study in Malaysia. Environ Sci Pollut Res 2021;28:26571–83. https://doi.org/10.1007/s11356-021-12435-6.
- Sharma KV, Talpa Sai PHVS, Sharma P, Kanti PK, Bhramara P, Akilu S. Prognostic modeling of polydisperse SiO2/Aqueous glycerol nanofluids’ thermophysical profile using an explainable artificial intelligence (XAI) approach. Eng Appl Artif Intell 2023;126:106967. https://doi.org/10.1016/j.engappai.2023.106967.
- Alruqi M, Sharma P, Algburi S, Khan MA, Alsubih M, Islam S. Biomass energy transformation: Harnessing the power of explainable AI to unlock the potential of ultimate analysis data. Environ Technol Innov 2024;35:103652. https://doi.org/10.1016/j.eti.2024.103652.
- de Myttenaere A, Golden B, Le Grand B, Rossi F. Mean absolute percentage error for regression models. Neurocomputing 2016;192:38–48. https://doi.org/10.1016/j.neucom.2015.12.114.
- Elvidge S, Angling MJ, Nava B. On the use of modified Taylor diagrams to compare ionospheric assimilation models. Radio Sci 2014;49:737–45. https://doi.org/10.1002/2014RS005435.
- Simão ML, Videiro PM, Silva PBA, de Freitas Assad LP, Sagrilo LVS. Application of Taylor diagram in the evaluation of joint environmental distributions’ performances. Mar Syst Ocean Technol 2020;15:151–9. https://doi.org/10.1007/s40868-020-00081-5.
- Aberasturi DT. Violin plot. Wiley StatsRef Stat. Ref. Online, Wiley; 2023, pp. 1–7. https://doi.org/10.1002/9781118445112.stat08426.
- Molina E, Viale L, Vazquez P. How should we design violin plots? 2022 IEEE 4th Work. Vis. Guidel. Res. Des. Educ., IEEE; 2022, pp. 1–7. https://doi.org/10.1109/VisGuides57787.2022.00006.
- Hintze JL, Nelson RD. Violin plots: A box plot-density trace synergism. Am Stat 1998;52:181. https://doi.org/10.2307/2685478.
- Tanious R, Manolov R. Violin plots as visual tools in the meta-analysis of single-case experimental designs. Methodology 2022;18:221–38. https://doi.org/10.5964/meth.9209.
- Vergura S. Supervision of the energy performance of multi-arrays PV plants by means of bi-monthly violin plots. Renew Energy Power Qual J 2022;20:625–8. https://doi.org/10.24084/repqj20.384.
- Shin J, Yim I, Kwon S-B, Park S, Kim M, Cha Y. Evaluation of temperature effects on brake wear particles using clustered heatmaps. Environ Eng Res 2019;24:680–9. https://doi.org/10.4491/eer.2018.385.