Have a personal or library account? Click to login
Design and experiment of a Long Range Autonomous Underwater Vehicle for Ocean Acoustic Data Observation Cover

Design and experiment of a Long Range Autonomous Underwater Vehicle for Ocean Acoustic Data Observation

Open Access
|Mar 2025

References

  1. Venkatesan R, Tandon A, D’Asaro E, Atmanand MA. Observing the oceans in real time. Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-66493-4_1.
  2. Jensen FB, Kuperman WA, Porter MB, Schmidt H. Computational ocean acoustics. Springer New York; 2011. https://doi.org/10.1007/978-1-4419-8678-8.
  3. Dhanak MR, Xiros NI. Eds., Springer handbook of ocean engineering. Springer Cham; 2016. https://doi.org/10.1007/978-3-319-16649-0.
  4. Rogers EO, JG G, Smith WS, Denny GF, Farley PJ. Underwater acoustic glider. IEEE International Geoscience and Remote Sensing Symposium, vol.3, Sep. 2004, pp. 2241–2244. https://doi.org/10.1109/IGARSS.2004.1370808.
  5. Griffiths G. Ed., Technology and applications of autonomous underwater vehicles. CRC Press; 2002. https://doi.org/10.1201/9780203522301.
  6. Hobson BW, Bellingham JG, Kieft B, McEwen R, Godin M, Zhang Y. Tethys-class long range AUVs - extending the endurance of propeller-driven cruising AUVs from days to weeks. IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, United Kingdom: IEEE, Sep. 2012, pp. 1–8. https://doi.org/10.1109/AUV.2012.6380735.
  7. Roper DT, Phillips AB, Harris CA, Salavasidis G, Pebody M, Templeton R. Autosub long range 1500: An ultra-endurance AUV with 6000 km range, OCEANS 2017, Aberdeen, United Kingdom: IEEE, Jun. 2017, pp. 1–5. https://doi.org/10.1109/OCEANSE.2017.8084928.
  8. Furlong ME, Paxton D, Stevenson P, Pebody M, McPhail SD, Perrett J. Autosub long range: A long range deep diving AUV for ocean monitoring, 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, United Kingdom: IEEE, Sep. 2012, pp. 1–7. https://doi.org/10.1109/AUV.2012.6380737.
  9. Liu T, Jiang Z, Li S, Gu H. Explorer1000: A long endurance AUV with variable ballast systems, 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe: IEEE, May 2018, pp. 1–6. https://doi.org/10.1109/OCEANSKOBE.2018.8559249.
  10. Zimmerman R, D’Spain GL, Chadwell CD. Decreasing the radiated acoustic and vibration noise of a mid-size AUV. IEEE Journal of Oceanic Engineering, vol. 30, no. 1, Jan. 2005, pp. 179–187. https://doi.org/10.1109/JOE.2004.836996.
  11. Grund M, Freitag L, Preisig J, Ball K. The PLUSNet underwater communications system: Acoustic telemetry for undersea surveillance. OCEANS 2006, Boston, MA, USA: IEEE, Sep. 2006, pp. 1–5. https://doi.org/10.1109/OCEANS.2006.307036.
  12. Eiler JH, Grothues TM, Dobarro JA, Masuda MM. Comparing autonomous underwater vehicle (AUV) and vessel-based tracking performance for locating acoustically tagged fish. Marine Fisheries Review, vol. 75, no. 4, pp. 27–42, Feb. 2014. https://doi.org/10.7755/MFR.75.4.2.
  13. Nielsen PL, Muzi L, Siderius M. Seabed characterisation from ambient noise using short arrays and autonomous vehicles. IEEE Journal of Oceanic Engineering, vol. 42, no. 4, pp. 1094–1101, Oct. 2017. https://doi.org/10.1109/JOE.2017.2712338.
  14. Premus V, Abbot P, Gedney C, Christman R, Helfrick M, Campell R, Douglas K. IRAP: An integrated, real-time, autonomous passive acoustic monitoring system for beaked whale detection, localisation, and tracking. Journal of the Acoustical Society of America, vol. 140, no. 4, pp. 3181–3181, 2016. https://doi.org/10.1121/1.4969998
  15. Terracciano DS, Costanzi R, Manzari V, Stifani M, Caiti A. Passive bearing estimation using a 2-D acoustic vector sensor mounted on a hybrid autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, vol. 47, no. 3, pp. 799–814, Jul. 2022. https://doi.org/10.1109/JOE.2021.3132647.
  16. Yang S, Shang X, Sun T, Wang X, Zhao H, Fa S, Wang Y. A new dead reckoning method for HAUVs assisted by a dynamic model with ocean current information. Ocean Engineering, vol. 295, p. 116847, 2024. https://doi.org/10.1016/j.oceaneng.2024.116847
  17. Silvia MT, Richards RT. A theoretical and experimental investigation of low-frequency acoustic vector sensors. In Oceans ’02 MTS/IEEE, Biloxi, MI, USA: IEEE, 2002, pp. 1886–1897. https://doi.org/10.1109/OCEANS.2002.1191918.
  18. Sun Q, Zhou H. An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor. Polish Maritime Research, vol. 29, no. 1, pp. 57–62, Mar. 2022. https://doi.org/10.2478/pomr-2022-0006.
  19. Wang X, Wang Y, Wang P, Yang S, Niu W, Yang Y. Design, analysis, and testing of petrel acoustic autonomous underwater vehicle for marine monitoring. Physics of Fluids, vol. 34, no. 3, p. 037115, Mar. 2022. https://doi.org/10.1063/5.0083951.
DOI: https://doi.org/10.2478/pomr-2025-0006 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 67 - 70
Published on: Mar 5, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Qindong Sun, Shangfeng Xu, Tongshuai Sun, Faliang Lu, Pengfei Dong, Jiaqi Chang, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.