Have a personal or library account? Click to login
Impact of Tunnel Stern Design on Hydrodynamic Characteristics of Catamarans Cover

Impact of Tunnel Stern Design on Hydrodynamic Characteristics of Catamarans

By: Osman Osmanov and  Erhan Aksu  
Open Access
|Mar 2025

References

  1. Dubrovsky V, Lyakhovitsky A. Multi-hull ships. Backbone Publishing, Fair Lawn, NJ, USA, 2001.
  2. Quang PK, Hung PV, Cong NC, Tung TX. Effects of Rudder and Blade Pitch on Hydrodynamic Performance of Marine Propeller Using CFD. Polish Maritime Research, 29(2), pp. 55-63, 2022. https://doi.org/10.2478/pomr-2022-0017
  3. Zinati A, Ketabdari MJ, Zeraatgar H. Effects of Propeller Fouling on the Hydrodynamic Performance of a Marine Propeller. Polish Maritime Research, 30(4), pp. 61-73, 2023. https://doi.org/10.2478/pomr-2023-0059
  4. Yang J, Sun H, Li X, Liu X. Flow Field Characteristic Analysis of Cushion System of Partial Air Cushion Support Catamaran in Regular Waves. Polish Maritime Research, 29(3), pp. 21-32, 2022. https://doi.org/10.2478/pomr-2022-0024
  5. Haase M, Zurcher K, Davidson G, Binns JR, Thomas G, Bose N. Novel CFD-based full-scale resistance prediction for large medium-speed catamarans. Ocean Engineering, 111, pp. 198-208, 2016. https://doi.org/10.1016/j.oceaneng.2015.10.018
  6. Zlatev Z, Milanov E, Chotukova V, Sakamoto N, Stern F. Combined Model Scale EFD-CFD Investigation of the Maneuvering Characteristic of a High Speed Catamaran, 2009.
  7. Litwin W, Piątek D, Leśniewski W, Marszałkowski K. 50’ Sail Catamaran with Hybrid Propulsion, Design, Theoretical and Experimental Studies. Polish Maritime Research, 29(2), pp. 12-18, 2022. https://doi.org/10.2478/pomr-2022-0012
  8. Molland AF, Wellicome JF, Couser PR. Resistance experiments on a systematic series of high speed displacement catamaran forms: variation of length-displacement ratio and breadth-draught ratio. Ship Science Report No.71, University of Southampton, 1994.
  9. Sahoo PK, Salas M, Schwetz A. Practical evaluation of resistance of high-speed catamaran hull forms—Part I. Ships and Offshore Structures, 2(4), pp. 307-324, 2007. https://doi.org/10.1080/17445300701594237
  10. Moghaddas A, Zeraatgar H. Numerical Investigation of the Effects of Aspect Ratio on the Hydrodynamic Performance of a Semi-Planing Catamaran. Polish Maritime Research, 31(3), pp. 25-33, 2024. https://doi.org/10.2478/pomr-2024-0033
  11. Savitsky D, Dingee D. Some interference effects between two flat surfaces planing parallel to each other at high speed. Journal of the Aeronautical Sciences, 21(6), pp. 419-420, 1954. https://doi.org/10.2514/8.3057
  12. Bari GS, Matveev KI. Hydrodynamic modelling of planing catamarans with symmetric hulls. Ocean Engineering, 115, pp. 60-66, 2016. https://dx.doi.org/10.1016/j.oceaneng.2016.01.035
  13. Insel M, Molland AF. An investigation into the resistance components of high speed displacement catamarans. Trans. RINA, 134, pp. 1-20, 1992.
  14. Souto-Iglesias A, Zamora-Rodrıguez R, Fernandez-Gutierrez D., Perez-Rojas L. Analysis of the wave system of a catamaran for CFD validation. Experiments in Fluids, 42(2), pp. 321-332, 2007. https://doi.org/10.1007/s00348-006-0244-4).
  15. Broglia R, Jacob B, Zaghi S, Stern F, Olivieri A. Experimental investigation of interference effects for high-speed catamarans. Ocean Engineering, 76, pp. 75-85, 2014. http://dx.doi.org/10,1016/j.oceaneng.2013.12.003
  16. He W, Castiglione T, Stern F, Kandasamy M. Numerical analysis of the interference effects on resistance, sinkage and trim of a fast catamaran. Journal of Marine Science and Technology, 20(2), pp. 292-308, 2015. https://doi.org/10.1007/s00773-014-0283-0
  17. Hu J, Zhang Y, Wang P, Qin F. Numerical and experimental study on resistance of asymmetric catamaran with different layouts. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 71(2), pp. 91-110, 2020. http://dx.doi.org/10.21278/brod71206.
  18. Ge S, Zeng J, Jin B, Zhou W, Qin X. Design Wave Calculation of a Passenger Catamaran Under Multiple Load Control Parameters. Polish Maritime Research, 29(2), pp. 3-11, 2022. https://doi.org/10.2478/pomr-2022-0011
  19. Liu Y, Zhang LS, Sun LP, Li B. Numerical study on effects of buffer bulbous bow structure in collisions, in Recent Advances in Structural Integrity Analysis - Proceedings of the International Congress (APCF/SIF-2014), L. Ye, Editor, Woodhead Publishing: Oxford. pp. 168-172, 2014.
  20. Atlar M, Seo K, Sampson R, Danisman DB, Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved performance. International Journal of Naval Architecture and Ocean Engineering, 5(2), pp. 302-312, 2013. http://dx.doi.org/10.2478/IJNAOE-2013-0134
  21. Doi Y, Kajitani H, Miyata H, Kuzumi S. Characteristics of Stern Waves Generated by Ships of Simple Hull Form. First Report. Journal of the Society of Naval Architects of Japan, 1981(150), pp. 30-39, 1981.
  22. Rotteveel E, Hekkenberg R, van der Ploeg A. Inland ship stern optimisation in shallow water. Ocean Engineering, 141, pp. 555-569, 2017. http://dx.doi.org/10.1016/j.oceaneng.2017.06.028
  23. Percival S, Hendrix D, Noblesse F. Hydrodynamic optimisation of ship hull forms. Applied Ocean Research, 23(6), pp. 337-355, 2001. https://doi.org/10.1016/S0141-1187(02)00002-0
  24. Suzuki K, Kai H, Kashiwabara S. Studies on the optimisation of stern hull form based on a potential flow solver. Journal of Marine Science and Technology, 10, pp. 61-69, 2005. https://doi.org/10.1007/s00773-005-0198-x
  25. Tahara Y, Tohyama S, Katsui T. CFD-based multi-objective optimisation method for ship design, 52(5), pp. 499-527, 2006. https://doi.org/10.1002/fld.1178
  26. Kostas KV, Ginnis AI, Politis CG, Kaklis PD. Ship-hull shape optimisation with a T-spline based BEM–isogeometric solver. Computer Methods in Applied Mechanics and Engineering, 284, pp. 611-622, 2015. https://doi.org/10.1016/j.cma.2014.10.030
  27. Duy T-N, Hino T, Suzuki K. Numerical study on stern flow fields of ship hulls with different transom configurations. Ocean Engineering, 129, pp. 401-414, 2017. https://doi.org/10.1016/j.oceaneng.2016.10.052
  28. Blount DL. Design of propeller tunnels for high-speed craft. In Proceedings of 4th FAST Conference, 1997.
  29. Subramanian VA, Subramanyam PVV. Effect of tunnel on the resistance of high-speed planing craft. Journal of Naval Architecture and Marine Engineering, 2, 2009. https://doi.org/10.3329/jname.v2i1.2025
  30. Kim S-W, Lee GW, Seo KC. The comparison on resistance performance and running attitude of asymmetric catamaran changing shape of tunnel stern exit region. IOP Conference Series: Materials Science and Engineering, 383(1), p. 012047, 2018. https://doi.org/10.1088/1757-899X/383/1/012047
  31. Roshan F, Dashtimanesh A, Bilandi RN. Hydrodynamic characteristics of tunneled planing hulls in calm water. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 71(1), pp. 19-38, 2020. http://dx.doi.org/10.21278/brod71102
  32. Anderson JD. Computational fluid dynamics: the basics with applications. Mechanical engineering series, 1995.
  33. Hughes G. Friction and form resistance in turbulent flow, and a proposed formulation for use in model and ship correlation. National Physical Laboratory, NPL, Ship Division, Presented at the Institution of Naval Architects, Paper No. 7, London, April, RINA Transactions 1954-16, 1954.
  34. Bailey D. The NPL high speed round bilge displacement hull series: resistance, propulsion, manoeuvring and seakeeping data. Royal Institution of Naval Architects, 1976.
  35. Schlichting H. Boundary layer theory. 7th edn. McGrawHill, New York, 1979.
  36. International Towing Tank Conference. I. ITTC–Recommended Procedures and Guidelines Practical Guidelines for Ship CFD Applications. In Rio de Janeiro, 26th International Towing Tank Conference, 2011.
  37. International Towing Tank Conference. I. ITTC–Recommended Procedures and Guidelines ITTC Quality System Manual Recommended Procedures and Guidelines Practical Guidelines for Ship CFD Applications ITTC – Recommended Procedures and Guidelines, 2014.
  38. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), pp. 201-225, 1981. https://doi.org/10.1016/0021-9991(81)90145-5
  39. Fluent A. Theory guide, ANSYS, 2015.
  40. Boussinesq J. Essai sur la théorie des eaux courantes. Imprimerie nationale, 1877.
  41. Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J. A new k- eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), pp. 227-238, 1995. https://doi.org/10.1016/0045-7930(94)00032-T
  42. Barth T, Jespersen D. The design and application of upwind schemes on unstructured meshes. In 27th Aerospace Sciences Meeting, 1989. https://doi.org/10.2514/6.1989-366
DOI: https://doi.org/10.2478/pomr-2025-0003 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 31 - 43
Published on: Mar 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Osman Osmanov, Erhan Aksu, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.