Have a personal or library account? Click to login
Investigating the Coupling Effects of Momentum Wake-Buoyancy Jets in Thermohaline Stratification: A Simulation Study Cover

Investigating the Coupling Effects of Momentum Wake-Buoyancy Jets in Thermohaline Stratification: A Simulation Study

Open Access
|Dec 2024

References

  1. Zachary EM et al.On the structure and dynamics of stratified wakes generated by submerged propagating objects. Journal of Operational Oceanography 10(2), 191-204, 2017. https://doi.org/10.1080/1755876X.2017.1307801.
  2. Wang P et al.Comparative study on floating diffusion of submarine thermal wake based on dynamic grid and incoming flow method. Chinese Journal of Engineering Thermophysics 41(10), 2589-2595, 2020.
  3. Wang B et al. Numerical simulation of influence of propeller on thermal wake buoyation of submarine. Journal of Harbin Engineering University 43(5), 673-680, 2022. http://doi:10.11990 /jheu.202101022.
  4. Lin JT, Pao YH. Wakes in stratified fluids. Annual Review of Fluid Mechanics 11, 317-338, 1979. https://doi.org/10.1146/annurev.fl.11.010179.001533.
  5. Riley J, Lelong MP. Fluid motions in the presence of strong sTable stratification. Annual Review of Fluid Mechanics 32, 613-657, 2000. https://doi.org/10.1146/annurev.fluid.32.1.613.
  6. Spedding GR. Wake signature detection. Annual Review of Fluid Mechanics 46, 273-302, 2014. https://doi.org/10.1146/annurev-fluid-011212-140747.
  7. Spedding GR et al.Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid. Journal of Fluid Mechanics 314, 55-103, 1996. https://doi.10.1017/S0022112096000237.
  8. Voropayev SI, Afanasyev YD. Vortex structures in a stratified fluid: Order from chaos (applied mathematics). London; Chapman & Hall, 1994.
  9. Voropayev SI et al.Large vortex structures behind a maneuvering body in stratified fluids. Physics of Fluids 11, 1682-1684, 1999. https://doi.org/10.1063/1.870030.
  10. Radko T, David L. The age of a wake. Physics of Fluids 31(7), 076601, 2019. https://doi.10.1063/1.5100969.
  11. Dommermuth DG et al.Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. Journal of Fluid Mechanics 473, 83-101, 2002. https://doi.org/10.1017/S0022112002002276.
  12. Troitskaya Y et al.A theoretical model of a wake of a body towed in a stratified fluid at large Reynolds and Froude numbers. Nonlinear Processes in Geophysics 13, 247-253, 2006. https://doi.org/10.5194/npg-13-247-2006.
  13. Redford J et al.A numerical study of a weakly stratified turbulent wake. Journal of Fluid Mechanics 776, 568-609, 2015. https://doi.org/10.1017/jfm.2015.324
  14. Pasquetti R. Temporal/spatial simulation of the stratified far wake of a sphere. Computers & Fluids 40(1), 179-187, 2011. https://doi.org/10.1016/j.compfluid.2010.08.023.
  15. Sergey AS et al.Wake instability and dipole formation in stratified fluids. Fourth International Symposium on Computational Wind Engineering (CWE2006), Yokohama, 2006.
  16. Meunier P, Spedding GR. Stratified propelled wakes. Journal of Fluid Mechanics 552, 229-256, 2006. https://doi.org/10.1017/S0022112006008676.
  17. Du Y et al.Experimental study on the coupling effect of wake and buoyancy jet in warm and salt stratified environment. Chinese Journal of Engineering Thermophysics 45(6), 1780-1787, 2024.
  18. Spalart PR. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Proceedings of the First AFOSR International Conference on DNS/LES, Greyden Press, 1997.
  19. Gebhart B, Mollendorf JC. A new density relation for pure and saline water. Deep Sea Research Part II Topical Studies in Oceanography 24(9), 831-848, 1977. https://doi.org/10.1016/0146-6291(77)90475-1.
  20. Own CT, Millero FJ. The specific volume of seawater at high pressures. Deep-Sea Research 23, 595-612, 1976. https://doi.org/10.1016/0011-7471(76)90003-6.
  21. Fine RA, Millero F J. Compressibility of water as a function of temperature and pressure. Journal of Chemical Physics 59, 5529-5536, 1973. https://doi.org/10.1063/1.1679903.
DOI: https://doi.org/10.2478/pomr-2024-0059 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 153 - 160
Published on: Dec 10, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Du Yongcheng, Shuai Changgeng, Luo Feiyang, Gao Chengzhe, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.