References
- Xiaohong Li, Shuanghe Yu, Xiaozhi Gao, Yan Y, Ying Z. Path planning and obstacle avoidance control of UUV based on an enhanced A* algorithm and MPC in dynamic environment. Ocean Eng. 2024, 302: 117584. https://doi.org/10.1016/j.oceaneng.2024.117584.
- Zheping Yan, Jinyu Yan, Fangbo Nan, Sijia Cai, Shuping Hou. Distributed TMPC formation trajectory tracking of multi-UUV with time-varying communication delay. Ocean Eng. 2024, 117091. https://doi.org/10.1016/j.oceaneng.2024.117091.
- Xiaowei Yan, Hao Song, Zilong Peng, Huimin Kong. Review of research results concerning the modelling of shipping noise. Pol Marit Res. 2021, 28(2):102-115. https://doi.org/10.2478/pomr-2021-0027.
- Drężek M, Augustyniak M. Universal sea/fem based method for estimation of vibroacoustic coupling loss factors in realistic ship structures. Pol Marit Res. 2024, 31: 55-63. https://doi.org/10.2478/pomr-2024-0006.
- Kozaczka E, Grelowska G. Propagation of ship-generated noise in shallow sea. Pol Marit Res. 2018, 25(2):37-46. https://doi.org/10.2478/pomr-2018-0052.
- Qiaorui Si, Asad Ali, Ding Tian, Mengfei Chen, Xiao BC, Jian JY. Prediction of hydrodynamic noise in ducted propeller using flow field-acoustic field coupled simulation technique based on novel vortex sound theory. Ocean Eng. 2023, 272: 113907. https://doi.org/10.1016/j.oceaneng.2023.113907.
- Xuehao Wang, Yanhui Wang, Peng Wang, Shaoqiong Yang, Wendong Niu, Yehao Yang. Design, analysis, and testing of Petrel acoustic autonomous underwater vehicle for marine monitoring. Phys. Fluids. 2022, 34:037115. https://doi.org/10.1063/5.0083951.
- Lei Liu, Zengwu Zhao, Juan Wei, Xiaobei Li, Liwei Yuan. Simulation of shock test for an AUV propulsion motor based on DDAM. Journal of Physics: Conference Series. IOP Publishing. 2021, 2029:012037. https://doi.org/10.1088/1742-6596/2029/1/012037.
- Kowalczyk S, Felicjancik J. Numerical and experimental propeller noise investigations. Ocean Eng. .2016, 120108-115. https://doi.org/10.1016/j.oceaneng.2016.01.032.
- Bhattacharyya A, Krasilnikov V, Steen S. A CFD-based scaling approach for ducted propellers. Ocean Eng. 2016, 123: 116-130. https://doi.org/10.1016/j.oceaneng.2016.06.011.
- Denghui Qin, Guang Pan, Lee S, Qiaogao Huang, Yao Shi. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor. Ocean.Eng. 2019, 188(July), 106228.1-106228.15 https://doi.org/10.1016/j.oceaneng.2019.106228.
- Mengfei Chen, Jinfeng Liu, Qiaorui Si., Liang Yun, Zhongkun Jin, Jianping Yuan. Investigation into the hydrodynamic noise characteristics of electric ducted propeller, J. Mar. Sci. Eng. 2022, 10 (3). https://doi.org/10.3390/jmse10030378.
- Kimmerl J, Mertes P, Abdel-Maksoud M. Application of large eddy simulation to predict underwater noise of marine propulsors. Part 2: Noise generation. J. Mar. Sci. Eng. 2021, 9: 778. https://doi.org/10.3390/jmse9080792.
- Chamanara M, Ghassemi H. Hydrodynamic characteristics of the kort-nozzle propeller by different turbulence models. Am. J. Mech. Eng. 2016. 4:169-172. https://doi.org/10.12691/ajme-4-5-1.
- Wencan Zhang, Lihong Wu, Xiangwei Jiang, Xisheng Feng, Yiping Li, Junbao Zeng, Chongde Liu. Propeller Design for an Autonomous Underwater Vehicle by the Lifting-line Method based on OpenProp and CFD. J Mar Sci Appl. 2022, 21(2): 106-114. https://doi.org/10.1007/s11804-022-00275-w.
- Lee T, Ahn BK, Lee K, Lee Y, Kim HJ. Prediction of cavity inception speed and underwater radiated noise of a full-scale marine propeller based on a cavitation tunnel model test. Ocean Eng. 2024, 118456. https://doi.org/10.1016/j.oceaneng.2024.118456.
- Viitanen V, Sipilä T, Sánchez-Caja T, Siikonen T. CFD predictions of unsteady cavitation for a marine propeller in oblique inflow. Ocean Eng. 2022.112596. https://doi.org/10.1016/j.oceaneng.2022.112596.
- Ku G, Cho J, Cheong C, Seol H. Numerical investigation of tip-vortex cavitation noise of submarine propellers using hybrid computational hydro-acoustic approach. Ocean Eng. 2021, 109693. https://doi.org/10.1016/j.oceaneng.2021.109693.
- Railey K, Dibiaso D, Schmidt H. An acoustic remote sensing method for high-precision propeller rotation and speed estimation of unmanned underwater vehicles. J. Acoust. Soc. Am. 2020, 148(6): 3942-50. https://doi.org/10.1121/1.4754419.
- Gebbie J, Siderius M, Allen JS. Aspect-dependent radiated noise analysis of an underway autonomous underwater vehicle. J. Acoust. Soc. Am. 2012, 132(5). https://doi.org/10.1121/1.4754419.
- Changli Yu, Renzhi Wang, Xingming Zhang, Yueming Li. Experimental and numerical study on underwater radiated noise of AUV. Ocean Eng. Volume 201, 1 April 2020, 107111. https://doi.org/10.1016/j.oceaneng.2020.107111.
- Zakeri E, Farahat S, Moezi SA, Zare A. Robust sliding mode control of a mini unmanned underwater vehicle equipped with a new arrangement of water jet propulsions: Simulation and experimental study. Appl. Ocean Res. Volume 59, September 2016, Pages 521-542. https://doi.org/10.1016/j.apor.2016.07.006.
- Zhiwei Si, Shuaikang Shi, Xiuchang Huang, Zhiqiang Rao, Hongxing Hua. Vibro-acoustic characteristics of a coupled pump-jet hafting system-SUBOFF model under distributed unsteady hydrodynamics by a pump-jet. Ocean Eng. Volume 235, 1 September 2021, 109429. https://doi.org/10.1016/j.oceaneng.2021.109429.
- Xuehao Wang, Yanhui Wang, Peng Wang, Shaoqiong Yang, Wendong Niu, Yehao Yang. Design, analysis, and testing of Petrel acoustic autonomous underwater vehicle for marine monitoring. Phys. Fluids. 2022, 34. https://doi.org/10.1063/5.0083951.
- Qindong Sun, Hongkun Zhou. An Acoustic Sea Glider for Deep-Sea Noise Profiling Using an Acoustic Vector Sensor. Pol Marit Res. 29(1):57-62. https://doi.org/10.2478/pomr-2022-0006.
- Buszman, K. Analysing the Impact on Underwater Noise of Changes to the Parameters of a Ship’s Machinery. Pol Marit Res. https://doi.org/10.2478/pomr-2020-0059. September 202027(3):176-181.