Have a personal or library account? Click to login
Stress Assessment of a Steel Bullet LPG Tank Under Differential Settlement Based on Geodetic Measurements and Sensitivity Analysis Cover

Stress Assessment of a Steel Bullet LPG Tank Under Differential Settlement Based on Geodetic Measurements and Sensitivity Analysis

Open Access
|Dec 2024

References

  1. Gritz A, Wolff G. Gas and energy security in Germany and central and eastern Europe. Energy Policy 2024. https://doi.org/10.1016/j.enpol.2023.113885.
  2. Calderón M, Illing D, Veiga J. Facilities for bunkering of liquefied natural gas in ports. Transp. Res. Procedia 2016. https://doi.org/10.1016/j.trpro.2016.05.288.
  3. Zarzecki D. Development of the LNG terminal in Świnoujście, Poland. In: The future of energy consumption, security and natural gas. Springer International Publishing, Cham; 2022; pp. 191–220. https://doi.org/10.1007/978-3-030-80367-4_7.
  4. Cao Q, Zhao Y. Buckling strength of cylindrical steel tanks under harmonic settlement. Thin-Walled Struct. 2010. https://doi.org/10.1016/j.tws.2010.01.011.
  5. Gong J-G, Zhou Z-Q, Xuan F-Z. Buckling strength of cylindrical steel tanks under measured differential settlement: Harmonic components needed for consideration and its effect. Thin-Walled Struct. 2017. https://doi.org/10.1016/j.tws.2017.06.020.
  6. Zhao Y, Lei X, Wang Z, Cao Q. Buckling behavior of floating-roof steel tanks under measured differential settlement. Thin-Walled Struct. 2013. https://doi.org/10.1016/j.tws.2013.04.015.
  7. Grget G, Ravnjak K, Szavits-Nossan A. Analysis of results of molasses tanks settlement testing. Soils Found. 2018. https://doi.org/10.1016/j.sandf.2018.07.009.
  8. Ignatowicz R, Hotala E. Failure of cylindrical steel storage tank due to foundation settlements. Eng. Fail. Anal. 2020. https://doi.org/10.1016/j.engfailanal.2020.104628.
  9. Sobczyk B. LNG Tank in Świnoujście: Nonlinear Analysis of the Tank Dome Elements Behaviour. Polish Maritime Research. 2020. https://doi.org/10.2478/pomr-2020-0074
  10. An Sy, Jeong Hw, Kim O, Jaewoo Shim W. Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank. Polish Maritime Research. 2023. https://doi.org/10.2478/pomr-2023-0057
  11. Bao G, Qin W, Jiang Q, Pu C. Study of Predictive Control Model for Cooling Process of Mark III LNG Bunker. Polish Maritime Research. 2024. https://doi.org/10.2478/pomr-2024-0040
  12. Błachut J, Magnucki K. Strength, stability, and optimization of pressure vessels: Review of selected problems. Appl. Mech. Rev. 2008. https://doi.org/10.1115/1.2978080.
  13. Johnson W R, Zhu X-K, Sindelar R, Wiersma B. A parametric finite element study for determining burst strength of thin and thick-walled pressure vessels. Int. J. Press. Vessel. Pip. 2023. https://doi.org/10.1016/j.ijpvp.2023.104968.
  14. Kuanhai D, Yuanhua L, Bing L, Xiaohong W. Investigation on the calculation model of burst pressure for tube and casing under practical service environment. Int. J. Hydrogen Energy 2019. https://doi.org/10.1016/j.ijhydene.2019.06.205.
  15. Burgos C A, Jaca R C, Godoy L A. Post-buckling behavior of fluid-storage steel horizontal tanks. Int. J. Press. Vessel. Pip. 2018. https://doi.org/10.1016/j.ijpvp.2018.03.001.
  16. Magnucki K, Jasion P, Rodak M. Strength and buckling of an untypical dished head of a cylindrical pressure vessel. Int. J. Press. Vessel. Pip. 2018. https://doi.org/10.1016/j.ijpvp.2018.02.003.
  17. De-León-Escobedo D. Risk-based maintenance time for oil and gas steel pipelines under corrosion including uncertainty on the corrosion rate and consequence-based target reliability. Int. J. Press. Vessel. Pip. 2023. https://doi.org/10.1016/j.ijpvp.2023.104927.
  18. Luo W, Bi M, Yu D, Deng Z, Sun S, Ren J. A damage mechanics model under dynamic thermal loads and its application to pressure vessels under fire invasion. Eng. Fract. Mech. 2024. https://doi.org/10.1016/j.engfracmech.2024.110011.
  19. Bradley I, Scarponi G E, Otremba F, Birk A M. An overview of test standards and regulations relevant to the fire testing of pressure vessels. Process Saf. Environ. Prot. 2021. https://doi.org/10.1016/j.psep.2020.07.047.
  20. Barthelemy B, Chon C T, Haftka R T. Accuracy problems associated with semi-analytical derivatives of static response. Finite Elem. Anal. Des. 1988. https://doi.org/10.1016/0168-874X(88)90011-X.
  21. Bletzinger K-U, Firl M, Daoud F. Approximation of derivatives in semi-analytical structural optimization. Comput. Struct. 2008. https://doi.org/10.1016/j.compstruc.2007.04.014.
  22. De Boer H, van Keulen F. Refined semi-analytical design sensitivities. Int. J. Solids Struct. 2000. https://doi.org/10.1016/S0020-7683(99)00322-4.
  23. Ferenc T. Multiparameter sensitivity analysis of a GFRP composite footbridge of a sandwich structure and u-shaped cross-section. Compos. Struct. 2020. https://doi.org/10.1016/j.compstruct.2020.112793.
  24. Kiendl J, Schmidt R, Wüchner R, Bletzinger K-U. Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput. Methods Appl. Mech. Eng. 2014. https://doi.org/10.1016/j.cma.2014.02.001.
DOI: https://doi.org/10.2478/pomr-2024-0056 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 122 - 130
Published on: Dec 10, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Tomasz Ferenc, Rafał Gierasimczyk, Tomasz Mikulski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.