References
- Gritz A, Wolff G. Gas and energy security in Germany and central and eastern Europe. Energy Policy 2024. https://doi.org/10.1016/j.enpol.2023.113885.
- Calderón M, Illing D, Veiga J. Facilities for bunkering of liquefied natural gas in ports. Transp. Res. Procedia 2016. https://doi.org/10.1016/j.trpro.2016.05.288.
- Zarzecki D. Development of the LNG terminal in Świnoujście, Poland. In: The future of energy consumption, security and natural gas. Springer International Publishing, Cham; 2022; pp. 191–220. https://doi.org/10.1007/978-3-030-80367-4_7.
- Cao Q, Zhao Y. Buckling strength of cylindrical steel tanks under harmonic settlement. Thin-Walled Struct. 2010. https://doi.org/10.1016/j.tws.2010.01.011.
- Gong J-G, Zhou Z-Q, Xuan F-Z. Buckling strength of cylindrical steel tanks under measured differential settlement: Harmonic components needed for consideration and its effect. Thin-Walled Struct. 2017. https://doi.org/10.1016/j.tws.2017.06.020.
- Zhao Y, Lei X, Wang Z, Cao Q. Buckling behavior of floating-roof steel tanks under measured differential settlement. Thin-Walled Struct. 2013. https://doi.org/10.1016/j.tws.2013.04.015.
- Grget G, Ravnjak K, Szavits-Nossan A. Analysis of results of molasses tanks settlement testing. Soils Found. 2018. https://doi.org/10.1016/j.sandf.2018.07.009.
- Ignatowicz R, Hotala E. Failure of cylindrical steel storage tank due to foundation settlements. Eng. Fail. Anal. 2020. https://doi.org/10.1016/j.engfailanal.2020.104628.
- Sobczyk B. LNG Tank in Świnoujście: Nonlinear Analysis of the Tank Dome Elements Behaviour. Polish Maritime Research. 2020. https://doi.org/10.2478/pomr-2020-0074
- An Sy, Jeong Hw, Kim O, Jaewoo Shim W. Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank. Polish Maritime Research. 2023. https://doi.org/10.2478/pomr-2023-0057
- Bao G, Qin W, Jiang Q, Pu C. Study of Predictive Control Model for Cooling Process of Mark III LNG Bunker. Polish Maritime Research. 2024. https://doi.org/10.2478/pomr-2024-0040
- Błachut J, Magnucki K. Strength, stability, and optimization of pressure vessels: Review of selected problems. Appl. Mech. Rev. 2008. https://doi.org/10.1115/1.2978080.
- Johnson W R, Zhu X-K, Sindelar R, Wiersma B. A parametric finite element study for determining burst strength of thin and thick-walled pressure vessels. Int. J. Press. Vessel. Pip. 2023. https://doi.org/10.1016/j.ijpvp.2023.104968.
- Kuanhai D, Yuanhua L, Bing L, Xiaohong W. Investigation on the calculation model of burst pressure for tube and casing under practical service environment. Int. J. Hydrogen Energy 2019. https://doi.org/10.1016/j.ijhydene.2019.06.205.
- Burgos C A, Jaca R C, Godoy L A. Post-buckling behavior of fluid-storage steel horizontal tanks. Int. J. Press. Vessel. Pip. 2018. https://doi.org/10.1016/j.ijpvp.2018.03.001.
- Magnucki K, Jasion P, Rodak M. Strength and buckling of an untypical dished head of a cylindrical pressure vessel. Int. J. Press. Vessel. Pip. 2018. https://doi.org/10.1016/j.ijpvp.2018.02.003.
- De-León-Escobedo D. Risk-based maintenance time for oil and gas steel pipelines under corrosion including uncertainty on the corrosion rate and consequence-based target reliability. Int. J. Press. Vessel. Pip. 2023. https://doi.org/10.1016/j.ijpvp.2023.104927.
- Luo W, Bi M, Yu D, Deng Z, Sun S, Ren J. A damage mechanics model under dynamic thermal loads and its application to pressure vessels under fire invasion. Eng. Fract. Mech. 2024. https://doi.org/10.1016/j.engfracmech.2024.110011.
- Bradley I, Scarponi G E, Otremba F, Birk A M. An overview of test standards and regulations relevant to the fire testing of pressure vessels. Process Saf. Environ. Prot. 2021. https://doi.org/10.1016/j.psep.2020.07.047.
- Barthelemy B, Chon C T, Haftka R T. Accuracy problems associated with semi-analytical derivatives of static response. Finite Elem. Anal. Des. 1988. https://doi.org/10.1016/0168-874X(88)90011-X.
- Bletzinger K-U, Firl M, Daoud F. Approximation of derivatives in semi-analytical structural optimization. Comput. Struct. 2008. https://doi.org/10.1016/j.compstruc.2007.04.014.
- De Boer H, van Keulen F. Refined semi-analytical design sensitivities. Int. J. Solids Struct. 2000. https://doi.org/10.1016/S0020-7683(99)00322-4.
- Ferenc T. Multiparameter sensitivity analysis of a GFRP composite footbridge of a sandwich structure and u-shaped cross-section. Compos. Struct. 2020. https://doi.org/10.1016/j.compstruct.2020.112793.
- Kiendl J, Schmidt R, Wüchner R, Bletzinger K-U. Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput. Methods Appl. Mech. Eng. 2014. https://doi.org/10.1016/j.cma.2014.02.001.