Have a personal or library account? Click to login
Evaluation of Prediction Performances of Deep Learning Models for the Aerodynamic Characteristics of Flettner Rotors Cover

Evaluation of Prediction Performances of Deep Learning Models for the Aerodynamic Characteristics of Flettner Rotors

Open Access
|Dec 2024

References

  1. International Maritime Organization (IMO). Marine Environment Protection Committee (MEPC 80), 3-7 July 2023 – preview. 2023. https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-80.aspx.
  2. Zhang C, Zhu J, Guo H, Xue S, Wang X, Wang Z, Su P. Technical Requirement for 2023 IMO GHG Strategy. Sustainability 2024; vol. 16, no. 7; 2766. https://doi.org/10.3390/su16072766.
  3. Khan L, Macklin J, Peck B, Morton O, Souppez JBRG. A review of wind-assisted ship propulsion for sustainable commercial shipping: latest developments and future stakes. In Wind Propulsion Conference. R. Inst. Nav. Archit 2021. https://research.aston.ac.uk/en/publications/a-review-of-wind-assisted-ship-propulsion-for-sustainable-commerc.
  4. Hastings RB. The Flettner rotor ship. Science Activities 1971; 117-120. https://doi.org/10.1080/00368121.1971.10113354.
  5. Badalamenti C, Prince S. Effects of endplates on a rotating cylinder in crossflow. In 26th AIAA Applied Aerodynamics Conference 2008; 7063. https://doi.org/10.2514/6.2008-7063.
  6. Bordogna G, Muggiasca S, Giappino S, Belloli M, Keuning JA, Huijsmans RHM, Van’t Veer AP. Experiments on a Flettner rotor at critical and supercritical Reynolds numbers. Journal of Wind Engineering and Industrial Aerodynamics 2019; vol. 188; 19-29. https://doi.org/10.1016/j.jweia.2019.02.006.
  7. Bordogna G, Muggiasca S, Giappino S, Belloli M, Keuning JA, Huijsmans RHM. The effects of the aerodynamic interaction on the performance of two Flettner rotors. Journal of Wind Engineering and Industrial Aerodynamics 2020; 196, 104024. https://doi.org/10.1016/j.jweia.2019.104024.
  8. Chen W, Wang H, Liu X. Experimental investigation of the aerodynamic performance of Flettner rotors for marine applications. Ocean Engineering 2023; 281, 115006. https://doi.org/10.1016/j.oceaneng.2023.115006.
  9. de Marco A, Mancini S, Pensa C, Calise G, de Luca F. Flettner rotor concept for marine applications: A systematic study. International Journal of Rotating Machinery 2016; 1, 3458750. https://doi.org/10.1155/2016/3458750.
  10. Kwon CS, Yeon SM, Kim YC, Kim YG, Kim YH, Kang HJ. A parametric study for a flettner rotor in standalone condition using CFD. International Journal of Naval Architecture and Ocean Engineering 2022; 14, 100493. https://doi.org/10.1016/j.ijnaoe.2022.100493.
  11. Li B, Zhang R, Li Y, Zhang B, Guo C. Study of a new type of Flettner rotor in merchant ships. Polish Maritime Research 2021; vol. 28, no. 1; 28-41. https://doi.org/10.2478/pomr-2021-0003.
  12. Garzón F, Figueroa A. The study on the flow generated by an array of four Flettner rotors: theory and experiment. Applied Mathematics 2017; vol. 8, no. 12; 1851-1858. 10.4236/am.2017.812132.
  13. Kume K, Hamada T, Kobayashi H, Yamanaka S. Evaluation of aerodynamic characteristics of a ship with flettner rotors by wind tunnel tests and RANS-based CFD. Ocean Engineering 2022; 254, 111345. https://doi.org/10.1016/j.oceaneng.2022.111345.
  14. Lv J, Lin Y, Zhang R, Li B, Yang H. Assisted propulsion device of a semi-submersible ship based on the Magnus effect. Polish Maritime Research 2022; vol. 29, no. 3; 33-46. https://doi.org/10.2478/pomr-2022-0023.
  15. Seo J, Park DW. Numerical Study on the Aerodynamic Performance of Four Flettner Rotors by Varying Distance and Spin Ratio. Journal of Marine Science and Technology 2024; vol. 32, no. 2. https://doi.org/10.51400/2709-6998.2735.
  16. Tilling F, Ringsberg JW. Design, operation and analysis of wind-assisted cargo ships. Ocean Engineering. 2020; 211, 107603. https://doi.org/10.1016/j.oceaneng.2020.107603.
  17. Reche-Vilanova M, Hansen H, Bingham HB. Performance prediction program for wind-assisted cargo ships. Journal of Sailing Technology 2021; vol. 6, no. 01; 91-117. https://doi.org/10.5957/jst/2021.6.1.91.
  18. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; vol. 521, no. 7553; 436-444. https://doi.org/10.1038/nature14539.
  19. Lee S, You D. Prediction of laminar vortex shedding over a cylinder using deep learning. arXiv preprint arXiv, 2017. https://doi.org/10.48550/arXiv.1712.07854.
  20. Lee S, You D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning. Journal of Fluid Mechanics 2019; vol. 879; 217-254. https://doi.org/10.1017/jfm.2019.700.
  21. Han R, Wang Y, Zhang Y, Chen G. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network. Physics of Fluids 2019; vol. 31, no. 12. https://doi.org/10.1063/1.5127247.
  22. Hasegawa K, Fukami K, Murata T, Fukagata K. CNNLSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers. Fluid Dynamics Research 2020; vol. 52, no. 6, 065501. 10.1088/1873-7005/abb91d.
  23. Ye S, Zhang Z, Song X, Wang Y, Chen Y, Huang C. A flow feature detection method for modeling pressure distribution around a cylinder in non-uniform flows by using a convolutional neural network. Scientific reports 2020; vol. 10, no. 1; 4459. https://doi.org/10.1038/s41598-020-61450-z.
  24. Jin X, Cheng P, Chen WL, Li H. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder. Physics of Fluids 2018; vol. 30, no. 4. https://doi.org/10.1063/1.5024595.
  25. Xu H, Zhang W, Deng J, Rabault J. Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning. Journal of Hydrodynamics 2020; vol. 32, no. 2; 254-258. https://doi.org/10.1007/s42241-020-0027-z.
  26. Tokarev M, Palkin E, Mullyadzhanov R. Deep reinforcement learning control of cylinder flow using rotary oscillations at low Reynolds number. Energies 2020; vol. 13, no. 20; 5920. https://doi.org/10.3390/en13225920.
  27. SIEMENS, “STAR-CCM+ 2021. 3. 16.06 User Guide”, 2021.
  28. de Marco A, Mancini S, Pensa C. Preliminary analysis for marine application of Flettner rotors. In Proceedings of the 2nd International Symposium on Naval Architecture and Maritime, Istanbul, Turkey, 2014; 23-24. https://www.iris.unina.it/handle/11588/598037.
  29. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention– MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9 2015; 234-241. Proceedings Part III 18, 2015. https://doi.org/10.1007/978-3-319-24574-4_28.
  30. Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. pattern Anal. Mach. Intell. 2017; vol. 39, no. 12; 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615.
  31. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on machine learning (ICML-10). 2010; 807-814. https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf.
  32. Kingma DP, Ba J. Adam: A method for stochastic optimisation. arXiv preprint arXiv, 2014. https://doi.org/10.48550/arXiv.1412.6980.
DOI: https://doi.org/10.2478/pomr-2024-0046 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 4 - 20
Published on: Dec 10, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Janghoon Seo, Jung Yoon Park, Juhwan Ma, Young Bu Kim, Dong-Woo Park, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.