Have a personal or library account? Click to login
Increasing the Economic Efficiency of Marine Power Plants Using Waste Heat Boilers with Controlled Flow Separation Cover

Increasing the Economic Efficiency of Marine Power Plants Using Waste Heat Boilers with Controlled Flow Separation

Open Access
|Aug 2024

References

  1. United Nations Conference on Trade and Development. Executive Summary. In Review of Maritime Transport. 2023. [Online]. https://unctad.org/system/files/official-document/rmt2023_en.pdf [Accessed: February 15, 2024].
  2. Significant Ship 2014-2023. [Online] Available at: https://www.libramar.net/news/significant_ships_series/1-0-140 [Accessed: January 15, 2024].
  3. Wong HY. Handbook of Essential Formulae and Data on heat transfer for engineers. Longman, London and New York; 1978, 216 p.
  4. Project guides [Online]. Available at: https://www.man-es.com/marine/products/planning-tools-and-downloads/project-guides [Accessed: January 15, 2024].
  5. Thulukkanam K. Heat Exchangers: Volume I Classification, Selection, and Thermal Design. Third Edition, CRC Press; 2024, 703 p. doi: 10.1201/9781003352044.
  6. Kuznetsov VV. Justification of efficiency of plain shaped heat exchange surfaces to increase the compactness of power plants. Eastern-European Journal of Enterprise Technologies 6/8 (108), 2020, pp.17-27. doi: 10.15587/1729-4061.2020.214829.
  7. Khalatov AA. Heat Transfer and Hydrodynamics in the Fields of Mass Forces: A Review of the Works Performed at the Institute of Physics and Technology of the National Academy of Sciences of Ukraine Part 2. Surface-vortex systems (depressions) (in Russian). Industrial Heat Engineering, t. 34, №1, 2012, pp. 21-33.
  8. Kuznetsov V, Gogorenko O, Kuznetsova S. The development of long-range heat transfer surfaces for marine diesel engine charge air coolers, Scientific Journals of the Maritime University of Szczecin, 65 (137), 2021, pp. 51–57. doi: 10.17402/460.
  9. Khalatov AA. New Vortex Technologies of Aerothermodynamics in Power Gas Turbine Engineering. Part 3. Improvement of Thermogasdynamic Processes (in Russian). Industrial Heat Engineering, t. 30, № 6, 2008, pp. 5-19.
  10. Fatahian E, Nichkoohi, AL, Salarian, H, Khaleghinia J. Comparative study of flow separation control using suction and blowing over an airfoil with/without flap. Sādhanā, 44(11), 2019. doi:10.1007/s12046-019-1205-y.
  11. Shahrabi AF. The control of flow separation: Study of optimal open loop parameters. Physics of Fluids, 31(3), 2019. doi:10.1063/1.5082945.
  12. Redchits DA. Control of air flow separation on a cylinder using a dielectric barrier discharge (in Russian). Bulletin of Kharkiv National University, №1063, 2013, pp.144-159.
  13. Viguera R, Anzai Y, Sasaki Y, Nonomura T. Experimental Observations of Transient Flows in Separation Control Using a Plasma Actuator. Actuators, 12, 218, 2023. doi 10.3390/act12060218.
  14. EL-Sheikh M, El-Batsh H, Ali MAA, Zanoun E-S. Passive Flow Separation Control in Linear Compressor Cascade. 2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES). doi:10.1109/niles.2019.8909306.
  15. Zinchenko I, Skoryk A, Parafiynyk V. On the effect of spherical dimples at diffuser vane surface on performance of centrifugal compressor, Bulletin of NTU “KhPI”. Series: Power and heat engineering processes and equipment, no. 9(1181), 2016, pp. 37–43. doi: 10.20998/2078-774X.2016.09.05.
  16. Khalatov AA, Okishev AV, Onishchenko VN. Generalisation of experimental data on the Reynolds analogy factor for heat transfer intensifiers of various types. Industrial Heat Engineering, vol. 32, №5, 2010, pp. 5–13.
  17. About Code_Saturne. [Online]. Available: https://www.code-saturne.org/cms/web/ [Accessed: Apr. 10, 2023].
  18. SimScale CFD. [Online]. Available: https://www.simscale.com/product/cfd/ [Accessed: Apr. 10, 2023].
  19. Bystrov YA, Isayev SA, Kudryavtsev NA, Leont’yev AI. Numerical simulation of heat transfer vortex intensification in the pipe packs. St. Petersburg: Shipbuilding, 2005.
  20. Gatski TB, Hussaini MY, Lumley JL. Simulation and Modelling of Turbulent Flows. Oxford University Press. Oxford, New York. 1996. 314 p. URL: https://www.academia.edu/10100418/SIMULATION_AND_MODELLING_OF_TURBULENT_FLOWS (last accessed: 20.12.2018).
  21. 17012-901-011Г. Tanker for transportation of oil and petroleum products 39500 / 45300 Dw (in Russian). Specification. UkrCDB BSP. Mykolaiv, 1993, 680 p.
  22. 17012-360.064.345Г. Fuel, lubricating oil and boiler water reserves. Steam balance of the boiler plant. (In Russian). Calculations. UkrCDB BSP. Mykolaiv, 1993. 254 p.
  23. Waste Heat Recovery System (WHRS) for Reduction of Fuel Consumption, Emissions and EEDI 2018 [Online]. Available: https://www.biofuels.co.jp/waste-heat-recovery-system.pdf [Accessed: Apr. 01, 2023].
  24. Kuznetsov VV. Multi-Level Estimation of the Heat Transfer Processes Efficiency in the Power Plants Elements, (in Russian). Problemele Energeticii Regionale, №3(47), 2020, pp. 28-38. doi 10.5281/zenodo.4018947.
DOI: https://doi.org/10.2478/pomr-2024-0039 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 94 - 101
Published on: Aug 21, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Valerii Kuznetsov, Svitlana Kuznetsova, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.