Have a personal or library account? Click to login
Methods of Real-Time Parametric Diagnostics for Marine Diesel Engines Cover

Methods of Real-Time Parametric Diagnostics for Marine Diesel Engines

Open Access
|Aug 2024

References

  1. IMO. International convention for the safety of life at sea, SOLAS consolidated edition. London, International Maritime Organization, 2020.
  2. Varbanets R, Minchev D, Savelieva I, Rodionov A, Mazur T, Psariuk S, Bondarenko V. Advanced marine diesel engines diagnostics for IMO decarbonization compliance. AIP Conf. Proc. 2024, 3104(1), 020004. https://doi.org/10.1063/5.0198828
  3. Heywood J B. Internal combustion engine fundamentals, 2nd ed. New York, McGraw-Hill Education; 2018.
  4. Varbanets R. Diagnostic control of the working process of marine diesel engines in operation. Dissertation for Doctor of Technical Sciences, Odessa National Maritime University, 2010.
  5. TDC Sensor System. 2024. Retrieved from https://www.kistler.com/INT/en/cp/top-dead-center-sensor-systems-2629d/P0001160.
  6. Polanowski S. Determination of location of top dead centre and compression ratio value on the basis of ship engine indicator diagram. Polish Maritime Research 2008, 2(56). https://doi.org/10.2478/v10012-007-0065-2
  7. Tunestal P. Model based TDC offset estimation from motored cylinder pressure data. Proceedings of the 2009 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling IFP, RueilMalmaison, France, Nov. 30–Dec. 2, 2009. https://doi.org/10.3182/20091130-3-FR-4008.00032
  8. Pipitone E, Beccari A. Determination of TDC in internal combustion engines by a newly developed thermodynamic approach. Applied Thermal Engineering, 2009.
  9. Staś M. An universally applicable thermodynamic method for TDC determination. SAE Technical Paper 2000-01-0561. 2000. Retrieved from http://papers.sae.org/2000-01-0561/. doi, 10.4271/2000-01-0561
  10. Tazerout M, Le Corre O, Rousseau S. TDC determination in IC engines based on the thermodynamic analysis of the temperature-entropy diagram. SAE Technical Paper 1999-01-1489. 1999. Retrieved from http://papers.sae.org/1999-01-1489/. doi, 10.4271/1999-01-1489.
  11. Varbanets R A, Zalozh V I, Shakhov A V, Savelieva I V, Piterska V M. Determination of top dead centre location based on the marine diesel engine indicator diagram analysis. Diagnostyka 2020, 21(1), 51–60. https://doi.org/10.29354/diag/116585
  12. Neumann S, Varbanets R, Kyrylash O, Yeryganov O V, Maulevych V O. Marine diesels working cycle monitoring on the base of IMES GmbH pressure sensors data. Diagnostyka 2019, 20(2), 19–26. https://doi.org/10.29354/diag/104516
  13. Varbanets R, Karianskyi S, Rudenko S, Gritsuk I V, Yeryganov A, Kyrylash O, Aleksandrovskaya N. Improvement of diagnosing methods of the diesel engine functioning under operating conditions (No. 2017-01-2218). SAE Technical Paper, 2017.
  14. Doctor Analysis Software V6.4. 2024. Retrieved from https://iconresearch.co.uk/wp-content/uploads/2017/10/doctor-v6-4-reference-guide-rev-1-4.pdf.
  15. Minchev D, Varbanets R, Shumylo O, Zalozh V, Aleksandrovska N, Bratchenko P Truong T H. Digital twin test-bench performance for marine diesel engine applications. Polish Maritime Research 2023, 30(4), 81–91. https://doi.org/10.2478/pomr-2023-0061
  16. Neumann S, Varbanets R, Minchev D, Malchevsky V, Zalozh V. Vibrodiagnostics of marine diesel engines in IMES GmbH systems. Ships and Offshore Structures 2023, 18(11), 1535-1546. https://doi.org/10.1080/17445302.2022.2128558
  17. Neumann S. High temperature pressure sensor based on thin film strain gauges on stainless steel for continuous cylinder pressure control. CIMAC Congress Digest, Hamburg. 2001, pp. 1–12.
  18. Lehmann & Michels GmbH. Premet type L, LS, and XL electronic indicators. 2006. Retrieved from http://www.lemag.de/fileadmin/user_upload/PREMET_liste_100_04_2006.pdf
  19. Maridis GmbH. MarPrime technical data. Maridis GmbH. Rostock, Germany; 2015.
  20. Varbanets R, Fomin O, Píštěk V, Klymenko V, Minchev D, Khrulev A, Zalozh V, Kučera P. Acoustic method for estimation of marine low-speed engine turbocharger parameters. Journal of Marine Science and Engineering 2021, 9(3), 321. Retrieved from http://dx.doi.org/10.3390/jmse9030321
  21. Minchev D, Varbanets R, Aleksandrovskaya N, Pisintsaly L. Marine diesel engines operating cycle simulation for diagnostics issues. Acta Polytechnica 2021, 3(61), 428–440. http://dx.doi.org/10.14311/AP.2021.61.0435
  22. Shi J, Wang T, Zhao Z, Wu Z, Zhang Z. Cycle-to-cycle variation of a diesel engine fueled with Fischer–Tropsch fuel synthesized from coal. Appl. Sci. 2019, 9, 2032. https://doi.org/10.3390/app9102032
  23. Raspberry Pi Pico W and Pico WH. 2024. Retrieved from https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html.
  24. Blitz-PRO by D. S. Minchev. User’s manual. Retrieved from, http://blitzpro.zeddmalam.com/extra/Tutorial/Help.pdf.
  25. Minchev D S, Gogorenko O A, Varbanets R A, Moshentsev Y L, Píštěk V, Kučera P, et al. Prediction of centrifugal compressor instabilities for internal combustion engines operating cycle simulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2022. https://doi.org/10.1177/09544070221075419
  26. Neumann S. High temperature pressure sensor based on thin film strain gauges on stainless steel for continuous cylinder pressure control. CIMAC Congress Digest. Hamburg. 2001. pp. 1–12.
  27. Himmelblau D M. Applied nonlinear programming. 1972.
  28. Powell M J D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer J. 1964, 7, 155.
  29. Melnyk O, Onyshchenko S, Onishchenko O, Lohinov O, Ocheretna V. Integral approach to vulnerability assessment of ship’s critical equipment and systems. Transactions on Maritime Science 2023, 12(1). doi, 10.7225/toms.v12.n01.002
  30. Melnyk O, Onyshchenko S, Onishchenko O, Shumylo O, Voloshyn A, Koskina Y, Volianska Y. Review of ship information security risks and safety of maritime transportation issues. TransNav 2022, 16(4), 717-722. doi, 10.12716/1001.16.04.13
  31. Orobey V, Nemchuk O, Lymarenko O, Piterska V, Lohinova L. Taking account of the shift and inertia of rotation in problems of diagnostics of the spectra of critical forces mechanical systems. Diagnostyka 2021, 22(1), 39–44. https://doi.org/10.29354/diag/132555
  32. IMO. International convention for the safety of life at sea, part B. Prevention of fire and explosion, paragraph 2.2.5.2, SOLAS consolidated edition. London, International Maritime Organization, 2020.
  33. Shi J, Wang T, Zhao Z, Wu Z, Zhang Z. Cycle-to-cycle variation of a diesel engine fueled with Fischer–Tropsch fuel synthesized from coal. Appl. Sci. 2019; 9: 2032. https://doi.org/10.3390/app9102032
  34. Schmillen K, Wolschendorf J. Cycle-to-cycle variations of combustion noise in diesel engines. SAE Transactions 1989, 98, 60-70. http://www.jstor.org/stable/44580924
DOI: https://doi.org/10.2478/pomr-2024-0037 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 71 - 84
Published on: Aug 21, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Roman Varbanets, Dmytro Minchev, Yury Kucherenko, Vitalii Zalozh, Olena Kyrylash, Tetyana Tarasenko, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.